from transformers import DonutProcessor, VisionEncoderDecoderModel, VisionEncoderDecoderConfig import re import torch from PIL import Image import time from fastapi import FastAPI, UploadFile, File import io import os print("Set up config") image_size = [768, 1280] config_vision = VisionEncoderDecoderConfig.from_pretrained("Zombely/plwiki-proto-fine-tuned-v3.2") config_vision.encoder.image_size = image_size # (height, width) config_vision.decoder.max_length = 768 processor = DonutProcessor.from_pretrained("Zombely/plwiki-proto-fine-tuned-v3.2") model = VisionEncoderDecoderModel.from_pretrained("Zombely/plwiki-proto-fine-tuned-v3.2", config=config_vision) processor.image_processor.size = image_size[::-1] # should be (width, height) processor.image_processor.do_align_long_axis = False # dataset = load_dataset(config.validation_dataset_path, split=config.validation_dataset_split) device = "cuda" if torch.cuda.is_available() else "cpu" model.eval() model.to(device) print("Print ipconfig") os.system("ipconfig") print("Starting server") app = FastAPI() @app.get("/test") async def test(): return {"message": "Test"} @app.post("/process") async def process_image(file: UploadFile= File(...)): request_object_content = await file.read() input_image = Image.open(io.BytesIO(request_object_content)) # prepare encoder inputs pixel_values = processor(input_image.convert("RGB"), return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) # prepare decoder inputs task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids decoder_input_ids = decoder_input_ids.to(device) print("Start processing") # autoregressively generate sequence start_time = time.time() outputs = model.generate( pixel_values, decoder_input_ids=decoder_input_ids, max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) processing_time = (time.time() - start_time) # turn into JSON seq = processor.batch_decode(outputs.sequences)[0] seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token seq = processor.token2json(seq) return {"data": seq['text_sequence'], "processing_time": f"{processing_time} seconds"}