from transformers import DonutProcessor, VisionEncoderDecoderModel, VisionEncoderDecoderConfig import re import torch from PIL import Image import time from fastapi import FastAPI, UploadFile, File import io import os # print("Set up config") # config_vision = VisionEncoderDecoderConfig.from_pretrained("Zombely/plwiki-proto-fine-tuned-v3.2") # config_vision.encoder.image_size = [1920, 2560] # (height, width) # config_vision.decoder.max_length = 768 # processor = DonutProcessor.from_pretrained("Zombely/plwiki-proto-fine-tuned-v3.2") # model = VisionEncoderDecoderModel.from_pretrained("Zombely/plwiki-proto-fine-tuned-v3.2", config=config_vision) # processor.image_processor.size = [1920, 2560][::-1] # should be (width, height) # processor.image_processor.do_align_long_axis = False # # dataset = load_dataset(config.validation_dataset_path, split=config.validation_dataset_split) # device = "cuda" if torch.cuda.is_available() else "cpu" # model.eval() # model.to(device) print("Print ipconfig") os.system("ipconfig") print("Starting server") app = FastAPI() @app.get("/test") async def test(): return {"message": "Test"} # @app.post("/process") # async def process_image(file: UploadFile= File(...)): # request_object_content = await file.read() # input_image = Image.open(io.BytesIO(request_object_content)) # # prepare encoder inputs # pixel_values = processor(input_image.convert("RGB"), return_tensors="pt").pixel_values # pixel_values = pixel_values.to(device) # # prepare decoder inputs # task_prompt = "" # decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids # decoder_input_ids = decoder_input_ids.to(device) # print("Start processing") # # autoregressively generate sequence # start_time = time.time() # outputs = model.generate( # pixel_values, # decoder_input_ids=decoder_input_ids, # max_length=model.decoder.config.max_position_embeddings, # early_stopping=True, # pad_token_id=processor.tokenizer.pad_token_id, # eos_token_id=processor.tokenizer.eos_token_id, # use_cache=True, # num_beams=1, # bad_words_ids=[[processor.tokenizer.unk_token_id]], # return_dict_in_generate=True, # ) # processing_time = (time.time() - start_time) # # turn into JSON # seq = processor.batch_decode(outputs.sequences)[0] # seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") # seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token # seq = processor.token2json(seq) # return {"data": seq['text_sequence'], "processing_time": f"{processing_time} seconds"}