from typing import Any, List from transformers import VisionEncoderDecoderConfig, DonutProcessor, VisionEncoderDecoderModel import torch from torch.utils.data import DataLoader from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.callbacks import ModelCheckpoint import pytorch_lightning as pl import os from huggingface_hub import login import argparse from sconf import Config from utils.checkpoint import CustomCheckpointIO from utils.donut_dataset_stream import DonutDatasetStream from utils.donut_model_pl_stream import DonutModelPLModuleStream from utils.callbacks import PushToHubCallback import warnings from datasets import load_dataset, interleave_datasets from torchdata.datapipes.iter import IterableWrapper import json class TestIterator(IterableWrapper): def __init__(self, iterable, deepcopy=True, total_len=None): super().__init__(iterable, deepcopy) self.total_len = total_len def __len__(self): if self.total_len: return self.total_len return super().__len__() def main(config, hug_token): config_vision = VisionEncoderDecoderConfig.from_pretrained( config.pretrained_model_path) config_vision.encoder.image_size = config.image_size config_vision.decoder.max_length = config.max_length processor = DonutProcessor.from_pretrained(config.start_model_path) model = VisionEncoderDecoderModel.from_pretrained( config.pretrained_model_path, config=config_vision) processor.image_processor.size = config.image_size[::-1] processor.image_processor.do_align_long_axis = False added_tokens = [] ### PROCESS FUNC START ### def add_tokens(list_of_tokens: List[str]): """ Add special tokens to tokenizer and resize the token embeddings of the decoder """ newly_added_num = processor.tokenizer.add_tokens(list_of_tokens) if newly_added_num > 0: model.decoder.resize_token_embeddings(len(processor.tokenizer)) added_tokens.extend(list_of_tokens) def json2token(obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True): """ Convert an ordered JSON object into a token sequence """ if type(obj) == dict: if len(obj) == 1 and "text_sequence" in obj: return obj["text_sequence"] else: output = "" if sort_json_key: keys = sorted(obj.keys(), reverse=True) else: keys = obj.keys() for k in keys: if update_special_tokens_for_json_key: add_tokens([fr"", fr""]) output += ( fr"" + json2token(obj[k], update_special_tokens_for_json_key, sort_json_key) + fr"" ) return output elif type(obj) == list: return r"".join( [json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj] ) else: obj = str(obj) if f"<{obj}/>" in added_tokens: obj = f"<{obj}/>" # for categorical special tokens return obj def process(row, split): task_start_token, prompt_end_token = "", "" ground_truth = json.loads(row["ground_truth"]) if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa assert isinstance(ground_truth["gt_parses"], list) gt_jsons = ground_truth["gt_parses"] else: assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict) gt_jsons = [ground_truth["gt_parse"]] gt_token_sequences = ( [ json2token( gt_json, update_special_tokens_for_json_key=split == "train", sort_json_key=False, ) + processor.tokenizer.eos_token for gt_json in gt_jsons # load json from list of json ] ) add_tokens([task_start_token, prompt_end_token]) prompt_end_token_id = processor.tokenizer.convert_tokens_to_ids(prompt_end_token) # change if not 3 channels if row['image'].mode != "RGB": row['image'] = row['image'].convert("RGB") # inputs pixel_values = processor(row["image"], random_padding=split == "train", return_tensors="pt").pixel_values pixel_values = pixel_values.squeeze() # targets input_ids = processor.tokenizer( gt_token_sequences, add_special_tokens=False, max_length=config.max_length, padding="max_length", truncation=True, return_tensors="pt", )["input_ids"].squeeze(0) labels = input_ids.clone() labels[labels == processor.tokenizer.pad_token_id] = -100 # model doesn't need to predict pad token return {"pixel_values": pixel_values, "labels": labels, 'target_sequence': gt_token_sequences } def proces_train(row): return process(row, 'train') def proces_val(row): return process(row, 'validation') ### PROCESS FUNC END ### # train_dataset_process = DonutDatasetStream( # processor=processor, # model=model, # max_length=config.max_length, # split="train", # task_start_token="", # prompt_end_token="", # added_tokens=added_tokens, # sort_json_key=False, # cord dataset is preprocessed, so no need for this # ) # val_dataset_process = DonutDatasetStream( # processor=processor, # model=model, # max_length=config.max_length, # split="validation", # task_start_token="", # prompt_end_token="", # added_tokens=added_tokens, # sort_json_key=False, # cord dataset is preprocessed, so no need for this # ) dataset = load_dataset(config.dataset_path, streaming=True) val_dataset = dataset.pop('validation') train_dataset = interleave_datasets(list(dataset.values())) # train_length = sum(split.num_examples for split in dataset[list(dataset.keys())[0]].info.splits.values() if split.name != 'validation') # val_length = list(val_dataset.info.splits.values())[-1].num_examples train_dataset = train_dataset.map(proces_train, remove_columns = ['image', 'ground_truth']) val_dataset = val_dataset.map(proces_val, remove_columns = ['image', 'ground_truth']) # train_dataset = train_dataset.with_format('torch') # val_dataset = val_dataset.with_format('torch') train_dataset = IterableWrapper(train_dataset) val_dataset = IterableWrapper(val_dataset) model.config.pad_token_id = processor.tokenizer.pad_token_id model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids([''])[0] train_dataloader = DataLoader(train_dataset, batch_size=1, num_workers=0) val_dataloader = DataLoader(val_dataset, batch_size=1, num_workers=0) login(hug_token, True) model_module = DonutModelPLModuleStream(config.train_config.toDict(), processor, model, max_length=config.max_length, train_dataloader=train_dataloader, val_dataloader=val_dataloader) wandb_logger = WandbLogger(project="Donut", name=config.wandb_test_name) if not os.path.exists(config.checkpoint_path): os.mkdir(config.checkpoint_path) checkpoint_callback = ModelCheckpoint( monitor="val_metric", dirpath=config.checkpoint_path, filename="artifacts", save_top_k=1, save_last=False, mode="min", ) custom_ckpt = CustomCheckpointIO() trainer = pl.Trainer( accelerator="gpu" if torch.cuda.is_available() else 'cpu', # change to gpu devices=1, max_epochs=config.train_config.max_epochs, val_check_interval=config.train_config.val_check_interval, check_val_every_n_epoch=config.train_config.check_val_every_n_epoch, gradient_clip_val=config.train_config.gradient_clip_val, precision=16, # we'll use mixed precision plugins=custom_ckpt, num_sanity_val_steps=0, logger=wandb_logger, callbacks=[PushToHubCallback(output_model_path=config.output_model_path), checkpoint_callback], ) trainer.fit(model_module) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, required=True) args, left_argv = parser.parse_known_args() config = Config(args.config) config.argv_update(left_argv) hug_token = os.environ.get("HUG_TOKEN", "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") if not torch.cuda.is_available(): warnings.warn("You don't have cuda available, training might be taking long time or impossible") if not hug_token: raise Exception("You need to set up HUG_TOKEN in enviroments to push output model to hub") main(config, hug_token)