#!/usr/bin/env python # coding: utf-8 from transformers import VisionEncoderDecoderConfig, DonutProcessor, VisionEncoderDecoderModel from datasets import load_dataset import json import random from typing import Any, List, Tuple import torch from torch.utils.data import Dataset, DataLoader import re from nltk import edit_distance import numpy as np from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.callbacks import Callback, ModelCheckpoint import pytorch_lightning as pl import os from huggingface_hub import login from pytorch_lightning.plugins import CheckpointIO DATASET_PATH = "Zombely/pl-text-images-5000-whole" PRETRAINED_MODEL_PATH = "Zombely/plwiki-proto-fine-tuned" START_MODEL_PATH = "Zombely/plwiki-proto-fine-tuned" OUTPUT_MODEL_PATH = "Zombely/plwiki-proto-fine-tuned-v2" LOGGING_PATH = "plwiki-proto-ft-second-iter" CHECKPOINT_PATH = "./checkpoint" train_config = { "max_epochs":30, "val_check_interval":0.5, # how many times we want to validate during an epoch "check_val_every_n_epoch":1, "gradient_clip_val":1.0, "num_training_samples_per_epoch": 800, "lr":3e-5, "train_batch_sizes": [8], "val_batch_sizes": [1], "seed":2022, "num_nodes": 1, "warmup_steps": 300, # 800/8*30/10, 10% "result_path": "./result", "verbose": True, } dataset = load_dataset(DATASET_PATH) max_length = 768 image_size = [1920, 2560] config = VisionEncoderDecoderConfig.from_pretrained(PRETRAINED_MODEL_PATH) config.encoder.image_size = image_size # (height, width) config.decoder.max_length = max_length processor = DonutProcessor.from_pretrained(START_MODEL_PATH) model = VisionEncoderDecoderModel.from_pretrained(PRETRAINED_MODEL_PATH, config=config) added_tokens = [] class CustomCheckpointIO(CheckpointIO): def save_checkpoint(self, checkpoint, path, storage_options=None): del checkpoint["state_dict"] torch.save(checkpoint, path) def load_checkpoint(self, path, storage_options=None): checkpoint = torch.load(path + "artifacts.ckpt") state_dict = torch.load(path + "pytorch_model.bin") checkpoint["state_dict"] = {"model." + key: value for key, value in state_dict.items()} return checkpoint def remove_checkpoint(self, path) -> None: return super().remove_checkpoint(path) class DonutDataset(Dataset): """ DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets) Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt), and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string). Args: dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl max_length: the max number of tokens for the target sequences split: whether to load "train", "validation" or "test" split ignore_id: ignore_index for torch.nn.CrossEntropyLoss task_start_token: the special token to be fed to the decoder to conduct the target task prompt_end_token: the special token at the end of the sequences sort_json_key: whether or not to sort the JSON keys """ def __init__( self, dataset_name_or_path: str, max_length: int, split: str = "train", ignore_id: int = -100, task_start_token: str = "", prompt_end_token: str = None, sort_json_key: bool = True, ): super().__init__() self.max_length = max_length self.split = split self.ignore_id = ignore_id self.task_start_token = task_start_token self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token self.sort_json_key = sort_json_key self.dataset = load_dataset(dataset_name_or_path, split=self.split) self.dataset_length = len(self.dataset) self.gt_token_sequences = [] for sample in self.dataset: ground_truth = json.loads(sample["ground_truth"]) if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa assert isinstance(ground_truth["gt_parses"], list) gt_jsons = ground_truth["gt_parses"] else: assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict) gt_jsons = [ground_truth["gt_parse"]] self.gt_token_sequences.append( [ self.json2token( gt_json, update_special_tokens_for_json_key=self.split == "train", sort_json_key=self.sort_json_key, ) + processor.tokenizer.eos_token for gt_json in gt_jsons # load json from list of json ] ) self.add_tokens([self.task_start_token, self.prompt_end_token]) self.prompt_end_token_id = processor.tokenizer.convert_tokens_to_ids(self.prompt_end_token) def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True): """ Convert an ordered JSON object into a token sequence """ if type(obj) == dict: if len(obj) == 1 and "text_sequence" in obj: return obj["text_sequence"] else: output = "" if sort_json_key: keys = sorted(obj.keys(), reverse=True) else: keys = obj.keys() for k in keys: if update_special_tokens_for_json_key: self.add_tokens([fr"", fr""]) output += ( fr"" + self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key) + fr"" ) return output elif type(obj) == list: return r"".join( [self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj] ) else: obj = str(obj) if f"<{obj}/>" in added_tokens: obj = f"<{obj}/>" # for categorical special tokens return obj def add_tokens(self, list_of_tokens: List[str]): """ Add special tokens to tokenizer and resize the token embeddings of the decoder """ newly_added_num = processor.tokenizer.add_tokens(list_of_tokens) if newly_added_num > 0: model.decoder.resize_token_embeddings(len(processor.tokenizer)) added_tokens.extend(list_of_tokens) def __len__(self) -> int: return self.dataset_length def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Load image from image_path of given dataset_path and convert into input_tensor and labels Convert gt data into input_ids (tokenized string) Returns: input_tensor : preprocessed image input_ids : tokenized gt_data labels : masked labels (model doesn't need to predict prompt and pad token) """ sample = self.dataset[idx] # inputs pixel_values = processor(sample["image"], random_padding=self.split == "train", return_tensors="pt").pixel_values pixel_values = pixel_values.squeeze() # targets target_sequence = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1 input_ids = processor.tokenizer( target_sequence, add_special_tokens=False, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt", )["input_ids"].squeeze(0) labels = input_ids.clone() labels[labels == processor.tokenizer.pad_token_id] = self.ignore_id # model doesn't need to predict pad token # labels[: torch.nonzero(labels == self.prompt_end_token_id).sum() + 1] = self.ignore_id # model doesn't need to predict prompt (for VQA) return pixel_values, labels, target_sequence processor.image_processor.size = image_size[::-1] # should be (width, height) processor.image_processor.do_align_long_axis = False train_dataset = DonutDataset(DATASET_PATH, max_length=max_length, split="train", task_start_token="", prompt_end_token="", sort_json_key=False, # cord dataset is preprocessed, so no need for this ) val_dataset = DonutDataset(DATASET_PATH, max_length=max_length, split="validation", task_start_token="", prompt_end_token="", sort_json_key=False, # cord dataset is preprocessed, so no need for this ) model.config.pad_token_id = processor.tokenizer.pad_token_id model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids([''])[0] train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=4) val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=4) class DonutModelPLModule(pl.LightningModule): def __init__(self, config, processor, model): super().__init__() self.config = config self.processor = processor self.model = model def training_step(self, batch, batch_idx): pixel_values, labels, _ = batch outputs = self.model(pixel_values, labels=labels) loss = outputs.loss self.log_dict({"train_loss": loss}, sync_dist=True) return loss def validation_step(self, batch, batch_idx, dataset_idx=0): pixel_values, labels, answers = batch batch_size = pixel_values.shape[0] # we feed the prompt to the model decoder_input_ids = torch.full((batch_size, 1), self.model.config.decoder_start_token_id, device=self.device) outputs = self.model.generate(pixel_values, decoder_input_ids=decoder_input_ids, max_length=max_length, early_stopping=True, pad_token_id=self.processor.tokenizer.pad_token_id, eos_token_id=self.processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[self.processor.tokenizer.unk_token_id]], return_dict_in_generate=True,) predictions = [] for seq in self.processor.tokenizer.batch_decode(outputs.sequences): seq = seq.replace(self.processor.tokenizer.eos_token, "").replace(self.processor.tokenizer.pad_token, "") seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token predictions.append(seq) scores = list() for pred, answer in zip(predictions, answers): pred = re.sub(r"(?:(?<=>) | (?=", "", answer, count=1) answer = answer.replace(self.processor.tokenizer.eos_token, "") scores.append(edit_distance(pred, answer) / max(len(pred), len(answer))) if self.config.get("verbose", False) and len(scores) == 1: print(f"Prediction: {pred}") print(f" Answer: {answer}") print(f" Normed ED: {scores[0]}") return scores def validation_epoch_end(self, validation_step_outputs): # I set this to 1 manually # (previously set to len(self.config.dataset_name_or_paths)) num_of_loaders = 1 if num_of_loaders == 1: validation_step_outputs = [validation_step_outputs] assert len(validation_step_outputs) == num_of_loaders cnt = [0] * num_of_loaders total_metric = [0] * num_of_loaders val_metric = [0] * num_of_loaders for i, results in enumerate(validation_step_outputs): for scores in results: cnt[i] += len(scores) total_metric[i] += np.sum(scores) val_metric[i] = total_metric[i] / cnt[i] val_metric_name = f"val_metric_{i}th_dataset" self.log_dict({val_metric_name: val_metric[i]}, sync_dist=True) self.log_dict({"val_metric": np.sum(total_metric) / np.sum(cnt)}, sync_dist=True) def configure_optimizers(self): # TODO add scheduler optimizer = torch.optim.Adam(self.parameters(), lr=self.config.get("lr")) return optimizer def train_dataloader(self): return train_dataloader def val_dataloader(self): return val_dataloader class PushToHubCallback(Callback): def on_train_epoch_end(self, trainer, pl_module): print(f"Pushing model to the hub, epoch {trainer.current_epoch}") pl_module.model.push_to_hub(OUTPUT_MODEL_PATH, commit_message=f"Training in progress, epoch {trainer.current_epoch}") # pl_module.processor.push_to_hub(OUTPUT_MODEL_PATH, commit_message=f"Training in progress, epoch {trainer.current_epoch}") def on_train_end(self, trainer, pl_module): print(f"Pushing model to the hub after training") pl_module.processor.push_to_hub(OUTPUT_MODEL_PATH, commit_message=f"Training done") pl_module.model.push_to_hub(OUTPUT_MODEL_PATH, commit_message=f"Training done") login(os.environ.get("HUG_TOKKEN", None), True) # ### Wandb.ai link: https://wandb.ai/michalkozlowski936/Donut?workspace=user-michalkozlowski936 # ### Hugging_face link https://huggingface.co/Zombely model_module = DonutModelPLModule(train_config, processor, model) wandb_logger = WandbLogger(project="Donut", name=LOGGING_PATH) checkpoint_callback = ModelCheckpoint( monitor="val_metric", dirpath=CHECKPOINT_PATH, filename="artifacts", save_top_k=1, save_last=False, mode="min", ) custom_ckpt = CustomCheckpointIO() trainer = pl.Trainer( accelerator="gpu", # change to gpu devices=1, max_epochs=train_config.get("max_epochs"), val_check_interval=train_config.get("val_check_interval"), check_val_every_n_epoch=train_config.get("check_val_every_n_epoch"), gradient_clip_val=train_config.get("gradient_clip_val"), precision=16, # we'll use mixed precision plugins=custom_ckpt, num_sanity_val_steps=0, logger=wandb_logger, callbacks=[PushToHubCallback(), checkpoint_callback], ) trainer.fit(model_module)