from transformers import VisionEncoderDecoderConfig, DonutProcessor, VisionEncoderDecoderModel import torch from torch.utils.data import DataLoader from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.callbacks import ModelCheckpoint import pytorch_lightning as pl import os from huggingface_hub import login import argparse from sconf import Config from utils.checkpoint import CustomCheckpointIO from utils.donut_dataset_stream import DonutDataset from utils.donut_model_pl import DonutModelPLModule from utils.callbacks import PushToHubCallback import warnings from datasets import load_dataset def main(config, hug_token): config_vision = VisionEncoderDecoderConfig.from_pretrained( config.pretrained_model_path) config_vision.encoder.image_size = config.image_size config_vision.decoder.max_length = config.max_length processor = DonutProcessor.from_pretrained(config.start_model_path) model = VisionEncoderDecoderModel.from_pretrained( config.pretrained_model_path, config=config_vision) processor.image_processor.size = config.image_size[::-1] processor.image_processor.do_align_long_axis = False added_tokens = [] dataset = load_dataset(config.dataset_path) dataset.train_test_split(test_size=0.1) print(dataset) # train_dataset = DonutDataset( # dataset, # processor=processor, # model=model, # max_length=config.max_length, # split="train", # task_start_token="", # prompt_end_token="", # added_tokens=added_tokens, # sort_json_key=False, # cord dataset is preprocessed, so no need for this # ) # val_dataset = DonutDataset( # dataset, # processor=processor, # model=model, # max_length=config.max_length, # split="validation", # task_start_token="", # prompt_end_token="", # added_tokens=added_tokens, # sort_json_key=False, # cord dataset is preprocessed, so no need for this # ) # model.config.pad_token_id = processor.tokenizer.pad_token_id # model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids([''])[0] # train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=1) # val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=1) # login(hug_token, True) # model_module = DonutModelPLModule(config.train_config.toDict(), processor, model, max_length=config.max_length, train_dataloader=train_dataloader, val_dataloader=val_dataloader) # wandb_logger = WandbLogger(project="Donut", name=config.wandb_test_name) # checkpoint_callback = ModelCheckpoint( # monitor="val_metric", # dirpath=config.checkpoint_path, # filename="artifacts", # save_top_k=1, # save_last=False, # mode="min", # ) # custom_ckpt = CustomCheckpointIO() # trainer = pl.Trainer( # accelerator="gpu" if torch.cuda.is_available() else 'cpu', # change to gpu # devices=1, # max_epochs=config.train_config.max_epochs, # val_check_interval=config.train_config.val_check_interval, # check_val_every_n_epoch=config.train_config.check_val_every_n_epoch, # gradient_clip_val=config.train_config.gradient_clip_val, # precision=16, # we'll use mixed precision # plugins=custom_ckpt, # num_sanity_val_steps=0, # logger=wandb_logger, # callbacks=[PushToHubCallback(output_model_path=config.output_model_path), checkpoint_callback], # ) # trainer.fit(model_module) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, required=True) args, left_argv = parser.parse_known_args() config = Config(args.config) config.argv_update(left_argv) hug_token = os.environ.get("HUG_TOKEN", None) if not torch.cuda.is_available(): warnings.warn("You don't have cuda available, training might be taking long time or impossible") if not hug_token: raise Exception("You need to set up HUG_TOKEN in enviroments to push output model to hub") main(config, hug_token)