95 lines
3.9 KiB
Python
95 lines
3.9 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
|
|
from transformers import DonutProcessor, VisionEncoderDecoderModel, VisionEncoderDecoderConfig
|
|
from datasets import load_dataset
|
|
import re
|
|
import json
|
|
import torch
|
|
from tqdm.auto import tqdm
|
|
import numpy as np
|
|
import pandas as pd
|
|
from donut import JSONParseEvaluator
|
|
import argparse
|
|
from sconf import Config
|
|
|
|
def main(config):
|
|
|
|
if config.use_enc_dec_config:
|
|
config_vision = VisionEncoderDecoderConfig.from_pretrained(config.pretrained_model_path)
|
|
config_vision.encoder.image_size = config.image_size # (height, width)
|
|
config_vision.decoder.max_length = config.max_dec_length
|
|
|
|
processor = DonutProcessor.from_pretrained(config.pretrained_processor_path)
|
|
model = VisionEncoderDecoderModel.from_pretrained(config.pretrained_model_path, config=config_vision if config.use_enc_dec_config else None)
|
|
|
|
processor.image_processor.size = config.image_size[::-1] # should be (width, height)
|
|
processor.image_processor.do_align_long_axis = False
|
|
|
|
dataset = load_dataset(config.validation_dataset_path, split=config.validation_dataset_split)
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
model.eval()
|
|
model.to(device)
|
|
output_list = []
|
|
accs = []
|
|
|
|
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
|
|
# prepare encoder inputs
|
|
pixel_values = processor(sample['image'].convert("RGB"), return_tensors="pt").pixel_values
|
|
pixel_values = pixel_values.to(device)
|
|
# prepare decoder inputs
|
|
task_prompt = "<s_cord-v2>"
|
|
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
|
decoder_input_ids = decoder_input_ids.to(device)
|
|
|
|
# autoregressively generate sequence
|
|
outputs = model.generate(
|
|
pixel_values,
|
|
decoder_input_ids=decoder_input_ids,
|
|
max_length=model.decoder.config.max_position_embeddings,
|
|
early_stopping=True,
|
|
pad_token_id=processor.tokenizer.pad_token_id,
|
|
eos_token_id=processor.tokenizer.eos_token_id,
|
|
use_cache=True,
|
|
num_beams=1,
|
|
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
|
return_dict_in_generate=True,
|
|
)
|
|
|
|
# turn into JSON
|
|
seq = processor.batch_decode(outputs.sequences)[0]
|
|
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
|
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
|
|
seq = processor.token2json(seq)
|
|
if config.has_metadata:
|
|
ground_truth = json.loads(sample["ground_truth"])
|
|
ground_truth = ground_truth["gt_parse"]
|
|
evaluator = JSONParseEvaluator()
|
|
score = evaluator.cal_acc(seq, ground_truth)
|
|
|
|
accs.append(score)
|
|
if config.print_output:
|
|
if 'ground_truth' in sample:
|
|
ground_truth = json.loads(sample["ground_truth"])
|
|
ground_truth = str(ground_truth["gt_parse"])
|
|
print("Original: ", ground_truth + "\n")
|
|
print("Prediction: ", str(seq) + "\n")
|
|
output_list.append(seq)
|
|
if config.output_file_dir:
|
|
df = pd.DataFrame(map(lambda x: x.get('text_sequence', ''), output_list))
|
|
df.to_csv(f'{config.output_file_dir}/{config.test_name}-out.tsv', sep='\t', header=False, index=False)
|
|
|
|
if config.has_metadata:
|
|
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
|
|
print(scores, f"length : {len(accs)}")
|
|
print("Mean accuracy:", np.mean(accs))
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--config", type=str, required=True)
|
|
args, left_argv = parser.parse_known_args()
|
|
config = Config(args.config)
|
|
config.argv_update(left_argv)
|
|
|
|
main(config)
|