donut/train.py
mkozlowskiAzimuthe ab051e21b1 restore donut
2023-01-25 17:44:25 +01:00

116 lines
4.3 KiB
Python

from transformers import VisionEncoderDecoderConfig, DonutProcessor, VisionEncoderDecoderModel
import torch
from torch.utils.data import DataLoader
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint
import pytorch_lightning as pl
import os
from huggingface_hub import login
import argparse
from sconf import Config
from utils.checkpoint import CustomCheckpointIO
from utils.donut_dataset import DonutDataset
from utils.donut_model_pl import DonutModelPLModule
from utils.callbacks import PushToHubCallback
import warnings
from datasets import load_dataset
def main(config, hug_token):
config_vision = VisionEncoderDecoderConfig.from_pretrained(
config.pretrained_model_path)
config_vision.encoder.image_size = config.image_size
config_vision.decoder.max_length = config.max_length
processor = DonutProcessor.from_pretrained(config.start_model_path)
model = VisionEncoderDecoderModel.from_pretrained(
config.pretrained_model_path, config=config_vision)
processor.image_processor.size = config.image_size[::-1]
processor.image_processor.do_align_long_axis = False
added_tokens = []
train_dataset = DonutDataset(
config.dataset_path,
processor=processor,
model=model,
max_length=config.max_length,
split="train",
task_start_token="<s_cord-v2>",
prompt_end_token="<s_cord-v2>",
added_tokens=added_tokens,
sort_json_key=False, # cord dataset is preprocessed, so no need for this
)
val_dataset = DonutDataset(
config.dataset_path,
processor=processor,
model=model,
max_length=config.max_length,
split="validation",
task_start_token="<s_cord-v2>",
prompt_end_token="<s_cord-v2>",
added_tokens=added_tokens,
sort_json_key=False, # cord dataset is preprocessed, so no need for this
)
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids(['<s_cord-v2>'])[0]
train_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=4)
val_dataloader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=4)
login(hug_token, True)
model_module = DonutModelPLModule(config.train_config.toDict(), processor, model, max_length=config.max_length, train_dataloader=train_dataloader, val_dataloader=val_dataloader)
wandb_logger = WandbLogger(project="Donut", name=config.wandb_test_name)
checkpoint_callback = ModelCheckpoint(
monitor="val_metric",
dirpath=config.checkpoint_path,
filename="artifacts",
save_top_k=1,
save_last=False,
mode="min",
)
custom_ckpt = CustomCheckpointIO()
trainer = pl.Trainer(
accelerator="gpu" if torch.cuda.is_available() else 'cpu', # change to gpu
devices=1,
max_epochs=config.train_config.max_epochs,
val_check_interval=config.train_config.val_check_interval,
check_val_every_n_epoch=config.train_config.check_val_every_n_epoch,
gradient_clip_val=config.train_config.gradient_clip_val,
precision=16, # we'll use mixed precision
plugins=custom_ckpt,
num_sanity_val_steps=0,
logger=wandb_logger,
callbacks=[PushToHubCallback(output_model_path=config.output_model_path), checkpoint_callback],
)
trainer.fit(model_module)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
args, left_argv = parser.parse_known_args()
config = Config(args.config)
config.argv_update(left_argv)
hug_token = os.environ.get("HUG_TOKEN", None)
if not torch.cuda.is_available():
warnings.warn("You don't have cuda available, training might be taking long time or impossible")
if not hug_token:
raise Exception("You need to set up HUG_TOKEN in enviroments to push output model to hub")
main(config, hug_token)