donut/donut-eval.py
2022-12-14 14:53:27 +00:00

84 lines
2.3 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[1]:
from transformers import DonutProcessor, VisionEncoderDecoderModel
from datasets import load_dataset
import re
import json
import torch
from tqdm.auto import tqdm
import numpy as np
from donut import JSONParseEvaluator
# In[2]:
processor = DonutProcessor.from_pretrained("Zombely/plwiki-proto-fine-tuned")
model = VisionEncoderDecoderModel.from_pretrained("Zombely/plwiki-proto-fine-tuned")
# In[3]:
dataset = load_dataset("Zombely/pl-text-images-5000-whole", split="validation")
# In[4]:
device = "cuda" if torch.cuda.is_available() else "cpu"
model.eval()
model.to(device)
output_list = []
accs = []
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)):
# prepare encoder inputs
pixel_values = processor(sample["image"].convert("RGB"), return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
# prepare decoder inputs
task_prompt = "<s_cord-v2>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
decoder_input_ids = decoder_input_ids.to(device)
# autoregressively generate sequence
outputs = model.generate(
pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# turn into JSON
seq = processor.batch_decode(outputs.sequences)[0]
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
seq = processor.token2json(seq)
ground_truth = json.loads(sample["ground_truth"])
ground_truth = ground_truth["gt_parse"]
evaluator = JSONParseEvaluator()
score = evaluator.cal_acc(seq, ground_truth)
accs.append(score)
output_list.append(seq)
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)}
print(scores, f"length : {len(accs)}")
print("Mean accuracy:", np.mean(accs))