donut/train_stream.py

256 lines
10 KiB
Python

from typing import Any, List
from transformers import VisionEncoderDecoderConfig, DonutProcessor, VisionEncoderDecoderModel
import torch
from torch.utils.data import DataLoader
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint
import pytorch_lightning as pl
import os
from huggingface_hub import login
import argparse
from sconf import Config
from utils.checkpoint import CustomCheckpointIO
from utils.donut_dataset_stream import DonutDatasetStream
from utils.donut_model_pl_stream import DonutModelPLModuleStream
from utils.callbacks import PushToHubCallback
import warnings
from datasets import load_dataset, interleave_datasets
from torchdata.datapipes.iter import IterableWrapper
import json
class CustomWrapperIterator(IterableWrapper):
def __init__(self, iterable, deepcopy=True, total_len=None):
super().__init__(iterable, deepcopy)
self.total_len = total_len
def __len__(self):
if self.total_len:
return self.total_len
return super().__len__()
def main(config, hug_token):
config_vision = VisionEncoderDecoderConfig.from_pretrained(
config.pretrained_model_path)
config_vision.encoder.image_size = config.image_size
config_vision.decoder.max_length = config.max_length
processor = DonutProcessor.from_pretrained(config.start_model_path)
model = VisionEncoderDecoderModel.from_pretrained(
config.pretrained_model_path, config=config_vision)
processor.image_processor.size = config.image_size[::-1]
processor.image_processor.do_align_long_axis = False
added_tokens = []
### PROCESS FUNC START ###
def add_tokens(list_of_tokens: List[str]):
"""
Add special tokens to tokenizer and resize the token embeddings of the decoder
"""
newly_added_num = processor.tokenizer.add_tokens(list_of_tokens)
if newly_added_num > 0:
model.decoder.resize_token_embeddings(len(processor.tokenizer))
added_tokens.extend(list_of_tokens)
def json2token(obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):
"""
Convert an ordered JSON object into a token sequence
"""
if type(obj) == dict:
if len(obj) == 1 and "text_sequence" in obj:
return obj["text_sequence"]
else:
output = ""
if sort_json_key:
keys = sorted(obj.keys(), reverse=True)
else:
keys = obj.keys()
for k in keys:
if update_special_tokens_for_json_key:
add_tokens([fr"<s_{k}>", fr"</s_{k}>"])
output += (
fr"<s_{k}>"
+ json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)
+ fr"</s_{k}>"
)
return output
elif type(obj) == list:
return r"<sep/>".join(
[json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]
)
else:
obj = str(obj)
if f"<{obj}/>" in added_tokens:
obj = f"<{obj}/>" # for categorical special tokens
return obj
def process(row, split):
task_start_token, prompt_end_token = "<s_cord-v2>", "<s_cord-v2>"
ground_truth = json.loads(row["ground_truth"])
if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa
assert isinstance(ground_truth["gt_parses"], list)
gt_jsons = ground_truth["gt_parses"]
else:
assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict)
gt_jsons = [ground_truth["gt_parse"]]
gt_token_sequences = (
[
json2token(
gt_json,
update_special_tokens_for_json_key=split == "train",
sort_json_key=False,
)
+ processor.tokenizer.eos_token
for gt_json in gt_jsons # load json from list of json
]
)
add_tokens([task_start_token, prompt_end_token])
prompt_end_token_id = processor.tokenizer.convert_tokens_to_ids(prompt_end_token)
# change if not 3 channels
if row['image'].mode != "RGB":
row['image'] = row['image'].convert("RGB")
# inputs
pixel_values = processor(row["image"], random_padding=split == "train", return_tensors="pt").pixel_values
pixel_values = pixel_values.squeeze()
# targets
input_ids = processor.tokenizer(
gt_token_sequences,
add_special_tokens=False,
max_length=config.max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)["input_ids"].squeeze(0)
labels = input_ids.clone()
labels[labels == processor.tokenizer.pad_token_id] = -100 # model doesn't need to predict pad token
return {"pixel_values": pixel_values, "labels": labels, 'target_sequence': gt_token_sequences }
def proces_train(row):
return process(row, 'train')
def proces_val(row):
return process(row, 'validation')
### PROCESS FUNC END ###
# train_dataset_process = DonutDatasetStream(
# processor=processor,
# model=model,
# max_length=config.max_length,
# split="train",
# task_start_token="<s_cord-v2>",
# prompt_end_token="<s_cord-v2>",
# added_tokens=added_tokens,
# sort_json_key=False, # cord dataset is preprocessed, so no need for this
# )
# val_dataset_process = DonutDatasetStream(
# processor=processor,
# model=model,
# max_length=config.max_length,
# split="validation",
# task_start_token="<s_cord-v2>",
# prompt_end_token="<s_cord-v2>",
# added_tokens=added_tokens,
# sort_json_key=False, # cord dataset is preprocessed, so no need for this
# )
# dataset_green = load_dataset("Zombely/wikisource-green", streaming=True)
# val_dataset = dataset_green.pop('validation')
# val_length = list(val_dataset.info.splits.values())[-1].num_examples
# dataset_yellow = load_dataset("Zombely/wikisource-yellow", streaming=True)
# dataset_red = load_dataset("Zombely/wikisource-red", streaming=True)
# train_dataset = interleave_datasets(list(dataset_green.values()) + list(dataset_yellow.values()) + list(dataset_red.values()))
# train_length_green = sum(split.num_examples for split in dataset_green[list(dataset_green.keys())[0]].info.splits.values() if split.name != 'validation')
# train_length_yellow = sum(split.num_examples for split in dataset_yellow[list(dataset_yellow.keys())[0]].info.splits.values())
# train_length_red = sum(split.num_examples for split in dataset_red[list(dataset_red.keys())[0]].info.splits.values())
# train_length = train_length_green + train_length_yellow + train_length_red
dataset = load_dataset(config.dataset_path, streaming=True)
val_dataset = dataset.pop('validation')
train_dataset = interleave_datasets(list(dataset.values()))
train_length = sum(split.num_examples for split in dataset[list(dataset.keys())[0]].info.splits.values() if split.name != 'validation')
val_length = list(val_dataset.info.splits.values())[-1].num_examples
train_dataset = train_dataset.map(proces_train, remove_columns = ['image', 'ground_truth'])
val_dataset = val_dataset.map(proces_val, remove_columns = ['image', 'ground_truth'])
# train_dataset = train_dataset.with_format('torch')
# val_dataset = val_dataset.with_format('torch')
train_dataset = CustomWrapperIterator(train_dataset, total_len=train_length)
val_dataset = CustomWrapperIterator(val_dataset, total_len=val_length)
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids(['<s_cord-v2>'])[0]
train_dataloader = DataLoader(train_dataset, batch_size=1, num_workers=0)
val_dataloader = DataLoader(val_dataset, batch_size=1, num_workers=0)
login(hug_token, True)
model_module = DonutModelPLModuleStream(config.train_config.toDict(), processor, model, max_length=config.max_length, train_dataloader=train_dataloader, val_dataloader=val_dataloader)
wandb_logger = WandbLogger(project="Donut", name=config.wandb_test_name)
if not os.path.exists(config.checkpoint_path):
os.mkdir(config.checkpoint_path)
checkpoint_callback = ModelCheckpoint(
monitor="val_metric",
dirpath=config.checkpoint_path,
filename="artifacts",
save_top_k=1,
save_last=False,
mode="min",
)
custom_ckpt = CustomCheckpointIO()
trainer = pl.Trainer(
accelerator="gpu" if torch.cuda.is_available() else 'cpu', # change to gpu
devices=1,
max_epochs=config.train_config.max_epochs,
val_check_interval=config.train_config.val_check_interval,
check_val_every_n_epoch=config.train_config.check_val_every_n_epoch,
gradient_clip_val=config.train_config.gradient_clip_val,
precision=16, # we'll use mixed precision
plugins=custom_ckpt,
num_sanity_val_steps=0,
logger=wandb_logger,
callbacks=[PushToHubCallback(output_model_path=config.output_model_path), checkpoint_callback],
)
trainer.fit(model_module)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
args, left_argv = parser.parse_known_args()
config = Config(args.config)
config.argv_update(left_argv)
hug_token = os.environ.get("HUG_TOKEN", "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")
if not torch.cuda.is_available():
warnings.warn("You don't have cuda available, training might be taking long time or impossible")
if not hug_token:
raise Exception("You need to set up HUG_TOKEN in enviroments to push output model to hub")
main(config, hug_token)