simple object detection
This commit is contained in:
parent
f46a7bc506
commit
08757256ec
122
rybki.ipynb
Normal file
122
rybki.ipynb
Normal file
@ -0,0 +1,122 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import cv2\n",
|
||||||
|
"import matplotlib.pyplot as plt\n",
|
||||||
|
"import keras\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"import threading"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"model = keras.models.load_model('./model')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"cap = cv2.VideoCapture(\"rybki.mp4\")\n",
|
||||||
|
"cap.set(cv2.CAP_PROP_FPS, 60)\n",
|
||||||
|
"\n",
|
||||||
|
"class_names=sorted(['Fish', \"Jellyfish\", 'Penguin', 'Puffin', 'Shark', 'Starfish', 'Stingray'])\n",
|
||||||
|
"object_detector = cv2.createBackgroundSubtractorMOG2(history=100, varThreshold=50)\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) \n",
|
||||||
|
"height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))\n",
|
||||||
|
"fps = cap.get(cv2.CAP_PROP_FPS)\n",
|
||||||
|
"out = cv2.VideoWriter('track_fish.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (width, height))\n",
|
||||||
|
"\n",
|
||||||
|
"while True:\n",
|
||||||
|
" ret, frame = cap.read()\n",
|
||||||
|
" if(frame is not None):\n",
|
||||||
|
" roi = frame[100: 900,330:1900]\n",
|
||||||
|
" mask = object_detector.apply(roi)\n",
|
||||||
|
" _, mask = cv2.threshold(mask,254,255, cv2.THRESH_BINARY)\n",
|
||||||
|
" conturs, _ =cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n",
|
||||||
|
"\n",
|
||||||
|
" images = []\n",
|
||||||
|
"\n",
|
||||||
|
" for cnt in conturs:\n",
|
||||||
|
" area = cv2.contourArea(cnt)\n",
|
||||||
|
" if area > 200:\n",
|
||||||
|
" #cv2.drawContours(roi,[cnt],-1,(0,255,0),2)\n",
|
||||||
|
" x,y,w,h = cv2.boundingRect(cnt)\n",
|
||||||
|
" rectangle = cv2.rectangle(roi,(x,y),(x+w,y+h),(0,255,0),3)\n",
|
||||||
|
" image_to_predict = roi[y:y+h,x:x+w]\n",
|
||||||
|
" image_to_predict = cv2.resize(image_to_predict,(227,227))\n",
|
||||||
|
" images.append((x,y,rectangle,np.expand_dims(image_to_predict,axis=0)))\n",
|
||||||
|
" \n",
|
||||||
|
" # pred = model.predict(np.expand_dims(image_to_predict, axis=0))\n",
|
||||||
|
" # label = class_names[np.argmax(pred)]\n",
|
||||||
|
" if images:\n",
|
||||||
|
" pred = model.predict(np.vstack([image[3] for image in images]))\n",
|
||||||
|
" labels = [class_names[np.argmax(pre)] for pre in pred]\n",
|
||||||
|
" for i,image in enumerate(images):\n",
|
||||||
|
" cv2.putText(image[2], labels[i], (image[0], image[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 1)\n",
|
||||||
|
" roi = cv2.resize(roi, (960, 540)) \n",
|
||||||
|
" cv2.imshow(\"roi\", roi)\n",
|
||||||
|
"\n",
|
||||||
|
" key = cv2.waitKey(30)\n",
|
||||||
|
" if key == 27:\n",
|
||||||
|
" break\n",
|
||||||
|
"\n",
|
||||||
|
" #out.write(frame)\n",
|
||||||
|
" else:\n",
|
||||||
|
" break\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"#out.release()\n",
|
||||||
|
"cap.release()\n",
|
||||||
|
"cv2.destroyAllWindows()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 59,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.2"
|
||||||
|
},
|
||||||
|
"orig_nbformat": 4,
|
||||||
|
"vscode": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "393784674bcf6e74f2fc9b1b5fb3713f9bd5fc6f8172c594e5cfa8e8c12849bc"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user