From 184bc462e0b2c56c1db929f85982eca871bf210d Mon Sep 17 00:00:00 2001 From: s444417 Date: Fri, 27 May 2022 18:01:18 +0200 Subject: [PATCH] DP happy path --- README.md | 4 +- ...anie-dialogiem-reguly(zmodyfikowany).ipynb | 972 ++++++++++++++++++ lab/09-zarzadzanie-dialogiem-reguly.ipynb | 571 ++++------ src/components/DP.py | 36 +- src/components/DST.py | 30 +- src/dialogue_system.py | 8 +- 6 files changed, 1262 insertions(+), 359 deletions(-) create mode 100644 lab/09-zarzadzanie-dialogiem-reguly(zmodyfikowany).ipynb diff --git a/README.md b/README.md index b89af65..2ec0201 100644 --- a/README.md +++ b/README.md @@ -14,8 +14,10 @@ --- -## Zadanie 9/10 DST +## Zadanie 9/10 DST i DP - implementacja regułowego modułu DST: **src/components DST.py** +- implementacja regułowego DP, tylko happy path: **src/components DP.py** + - wykorzystanie w pliku **src/dialogue_system.py** diff --git a/lab/09-zarzadzanie-dialogiem-reguly(zmodyfikowany).ipynb b/lab/09-zarzadzanie-dialogiem-reguly(zmodyfikowany).ipynb new file mode 100644 index 0000000..4032a32 --- /dev/null +++ b/lab/09-zarzadzanie-dialogiem-reguly(zmodyfikowany).ipynb @@ -0,0 +1,972 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n", + "
\n", + "

Systemy Dialogowe

\n", + "

9. Zarządzanie dialogiem z wykorzystaniem reguł [laboratoria]

\n", + "

Marek Kubis (2021)

\n", + "
\n", + "\n", + "![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Zarządzanie dialogiem z wykorzystaniem reguł\n", + "============================================\n", + "\n", + "Agent dialogowy wykorzystuje do zarządzanie dialogiem dwa moduły:\n", + "\n", + " - monitor stanu dialogu (dialogue state tracker, DST) — moduł odpowiedzialny za śledzenie stanu dialogu.\n", + "\n", + " - taktykę prowadzenia dialogu (dialogue policy) — moduł, który na podstawie stanu dialogu\n", + " podejmuje decyzję o tym jaką akcję (akt systemu) agent ma podjąć w kolejnej turze.\n", + "\n", + "Oba moduły mogą być realizowane zarówno z wykorzystaniem reguł jak i uczenia maszynowego.\n", + "Mogą one zostać również połączone w pojedynczy moduł zwany wówczas *menedżerem dialogu*.\n", + "\n", + "Przykład\n", + "--------\n", + "\n", + "Zaimplementujemy regułowe moduły monitora stanu dialogu oraz taktyki dialogowej a następnie\n", + "osadzimy je w środowisku *[ConvLab-2](https://github.com/thu-coai/ConvLab-2)*,\n", + "które służy do ewaluacji systemów dialogowych.\n", + "\n", + "**Uwaga:** Niektóre moduły środowiska *ConvLab-2* nie są zgodne z najnowszymi wersjami Pythona,\n", + "dlatego przed uruchomieniem poniższych przykładów należy się upewnić, że mają Państwo interpreter\n", + "Pythona w wersji 3.7. W przypadku nowszych wersji Ubuntu Pythona 3.7 można zainstalować z\n", + "repozytorium `deadsnakes`, wykonując polecenia przedstawione poniżej.\n", + "\n", + "```\n", + "sudo add-apt-repository ppa:deadsnakes/ppa\n", + "sudo apt update\n", + "sudo apt install python3.7 python3.7-dev python3.7-venv\n", + "```\n", + "\n", + "W przypadku innych systemów można skorzystać np. z narzędzia [pyenv](https://github.com/pyenv/pyenv) lub środowiska [conda](https://conda.io).\n", + "\n", + "Ze względu na to, że *ConvLab-2* ma wiele zależności zachęcam również do skorzystania ze środowiska\n", + "wirtualnego `venv`, w którym moduły zależne mogą zostać zainstalowane.\n", + "W tym celu należy wykonać następujące polecenia\n", + "\n", + "```\n", + "python3.7 -m venv convenv # utworzenie nowego środowiska o nazwie convenv\n", + "source convenv/bin/activate # aktywacja środowiska w bieżącej powłoce\n", + "pip install --ignore-installed jupyter # instalacja jupytera w środowisku convenv\n", + "```\n", + "\n", + "Po skonfigurowaniu środowiska można przystąpić do instalacji *ConvLab-2*, korzystając z\n", + "następujących poleceń\n", + "\n", + "```\n", + "mkdir -p l08\n", + "cd l08\n", + "git clone https://github.com/thu-coai/ConvLab-2.git\n", + "cd ConvLab-2\n", + "pip install -e .\n", + "python -m spacy download en_core_web_sm\n", + "cd ../..\n", + "```\n", + "\n", + "Po zakończeniu instalacji należy ponownie uruchomić notatnik w powłoce, w której aktywne jest\n", + "środowisko wirtualne *convenv*.\n", + "\n", + "```\n", + "jupyter notebook 08-zarzadzanie-dialogiem-reguly.ipynb\n", + "```\n", + "\n", + "Działanie zaimplementowanych modułów zilustrujemy, korzystając ze zbioru danych\n", + "[MultiWOZ](https://github.com/budzianowski/multiwoz) (Budzianowski i in., 2018), który zawiera\n", + "wypowiedzi dotyczące m.in. rezerwacji pokoi hotelowych, zamawiania biletów kolejowych oraz\n", + "rezerwacji stolików w restauracji.\n", + "\n", + "### Monitor Stanu Dialogu\n", + "\n", + "Do reprezentowania stanu dialogu użyjemy struktury danych wykorzystywanej w *ConvLab-2*." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'user_action': [],\n", + " 'system_action': [],\n", + " 'belief_state': {'cinema': {'book': {'title': '',\n", + " 'date': '',\n", + " 'time': '',\n", + " 'quantity': '',\n", + " 'seats': '',\n", + " 'area': '',\n", + " 'interval': ''},\n", + " 'semi': {'goal': ''}}},\n", + " 'request_state': {},\n", + " 'terminated': False,\n", + " 'history': []}" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# from convlab2.util.multiwoz.state import default_state\n", + "from utils.state import default_state\n", + "default_state()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Metoda `update` naszego monitora stanu dialogu będzie przyjmować akty użytkownika i odpowiednio\n", + "modyfikować stan dialogu.\n", + "W przypadku aktów typu `inform` wartości slotów zostaną zapamiętane w słownikach odpowiadających\n", + "poszczególnym dziedzinom pod kluczem `belief_state`.\n", + "W przypadku aktów typu `request` sloty, o które pyta użytkownik zostaną zapisane pod kluczem\n", + "`request_state`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"\\nclass SimpleRuleDST(DST):\\n def __init__(self):\\n DST.__init__(self)\\n self.state = default_state()\\n self.value_dict = json.load(open('l08/ConvLab-2/data/multiwoz/value_dict.json'))\\n\\n def update(self, user_act=None):\\n for intent, domain, slot, value in user_act:\\n domain = domain.lower()\\n intent = intent.lower()\\n\\n if domain in ['unk', 'general', 'booking']:\\n continue\\n\\n if intent == 'inform':\\n k = REF_SYS_DA[domain.capitalize()].get(slot, slot)\\n\\n if k is None:\\n continue\\n\\n domain_dic = self.state['belief_state'][domain]\\n\\n if k in domain_dic['semi']:\\n nvalue = normalize_value(self.value_dict, domain, k, value)\\n self.state['belief_state'][domain]['semi'][k] = nvalue\\n elif k in domain_dic['book']:\\n self.state['belief_state'][domain]['book'][k] = value\\n elif k.lower() in domain_dic['book']:\\n self.state['belief_state'][domain]['book'][k.lower()] = value\\n elif intent == 'request':\\n k = REF_SYS_DA[domain.capitalize()].get(slot, slot)\\n\\n if domain not in self.state['request_state']:\\n self.state['request_state'][domain] = {}\\n if k not in self.state['request_state'][domain]:\\n self.state['request_state'][domain][k] = 0\\n\\n return self.state\\n\\n def init_session(self):\\n self.state = default_state()\\n\"" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import json\n", + "import os\n", + "from convlab2.dst.dst import DST\n", + "from convlab2.dst.rule.multiwoz.dst_util import normalize_value\n", + "from convlab2.util.multiwoz.multiwoz_slot_trans import REF_SYS_DA\n", + "\n", + "class SimpleRuleDST(DST):\n", + " def __init__(self):\n", + " DST.__init__(self)\n", + " self.state = default_state()\n", + " self.value_dict = json.load(open('utils/value_dict.json'))\n", + "\n", + " def update(self, user_act=None):\n", + " for intent, domain, slot, value in user_act:\n", + " domain = domain.lower()\n", + " intent = intent.lower()\n", + " value = value.lower()\n", + "\n", + " # if domain in ['unk', 'cinema']:\n", + " # continue\n", + " k = slot\n", + "\n", + " if intent == 'inform':\n", + " # k = REF_SYS_DA[domain.capitalize()].get(slot, slot)\n", + " # if k is None:\n", + " # continue\n", + "\n", + " domain_dic = self.state['belief_state'][domain]\n", + "\n", + " if k in domain_dic['semi']:\n", + " # nvalue = normalize_value(self.value_dict, domain, k, value)\n", + " self.state['belief_state'][domain]['semi'][k] = value\n", + " elif k in domain_dic['book']:\n", + " self.state['belief_state'][domain]['book'][k] = value\n", + " elif k.lower() in domain_dic['book']:\n", + " self.state['belief_state'][domain]['book'][k.lower()] = value\n", + " elif intent == 'request':\n", + " # k = REF_SYS_DA[domain.capitalize()].get(slot, slot)\n", + "\n", + " if domain not in self.state['request_state']:\n", + " self.state['request_state'][domain] = {}\n", + " if k not in self.state['request_state'][domain]:\n", + " self.state['request_state'][domain][k] = 0\n", + "\n", + " return self.state\n", + "\n", + " def init_session(self):\n", + " self.state = default_state()\n", + "\n", + "'''\n", + "class SimpleRuleDST(DST):\n", + " def __init__(self):\n", + " DST.__init__(self)\n", + " self.state = default_state()\n", + " self.value_dict = json.load(open('l08/ConvLab-2/data/multiwoz/value_dict.json'))\n", + "\n", + " def update(self, user_act=None):\n", + " for intent, domain, slot, value in user_act:\n", + " domain = domain.lower()\n", + " intent = intent.lower()\n", + "\n", + " if domain in ['unk', 'general', 'booking']:\n", + " continue\n", + "\n", + " if intent == 'inform':\n", + " k = REF_SYS_DA[domain.capitalize()].get(slot, slot)\n", + "\n", + " if k is None:\n", + " continue\n", + "\n", + " domain_dic = self.state['belief_state'][domain]\n", + "\n", + " if k in domain_dic['semi']:\n", + " nvalue = normalize_value(self.value_dict, domain, k, value)\n", + " self.state['belief_state'][domain]['semi'][k] = nvalue\n", + " elif k in domain_dic['book']:\n", + " self.state['belief_state'][domain]['book'][k] = value\n", + " elif k.lower() in domain_dic['book']:\n", + " self.state['belief_state'][domain]['book'][k.lower()] = value\n", + " elif intent == 'request':\n", + " k = REF_SYS_DA[domain.capitalize()].get(slot, slot)\n", + "\n", + " if domain not in self.state['request_state']:\n", + " self.state['request_state'][domain] = {}\n", + " if k not in self.state['request_state'][domain]:\n", + " self.state['request_state'][domain][k] = 0\n", + "\n", + " return self.state\n", + "\n", + " def init_session(self):\n", + " self.state = default_state()\n", + "'''\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "W definicji metody `update` zakładamy, że akty dialogowe przekazywane do monitora stanu dialogu z\n", + "modułu NLU są czteroelementowymi listami złożonymi z:\n", + "\n", + " - nazwy aktu użytkownika,\n", + " - nazwy dziedziny, której dotyczy wypowiedź,\n", + " - nazwy slotu,\n", + " - wartości slotu.\n", + "\n", + "Zobaczmy na kilku prostych przykładach jak stan dialogu zmienia się pod wpływem przekazanych aktów\n", + "użytkownika." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'user_action': [],\n", + " 'system_action': [],\n", + " 'belief_state': {'cinema': {'book': {'title': '',\n", + " 'date': '',\n", + " 'time': '',\n", + " 'quantity': '',\n", + " 'seats': '',\n", + " 'area': '',\n", + " 'interval': ''},\n", + " 'semi': {'goal': ''}}},\n", + " 'request_state': {},\n", + " 'terminated': False,\n", + " 'history': []}" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dst = SimpleRuleDST()\n", + "dst.state" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'book': {'title': 'batman',\n", + " 'date': '',\n", + " 'time': '15:00',\n", + " 'quantity': '',\n", + " 'seats': '',\n", + " 'area': '',\n", + " 'interval': ''},\n", + " 'semi': {'goal': ''}}" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dst.update([['Inform', 'Cinema', 'time', '15:00'], ['Inform', 'Cinema', 'title', 'Batman']])\n", + "dst.state['belief_state']['cinema']" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'book': {'title': 'batman',\n", + " 'date': '',\n", + " 'time': '15:00',\n", + " 'quantity': '',\n", + " 'seats': '',\n", + " 'area': 'na górze na środku',\n", + " 'interval': ''},\n", + " 'semi': {'goal': ''}}" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dst.update([['Inform', 'Cinema', 'area', 'na górze na środku']])\n", + "dst.state['belief_state']['cinema']" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'cinema': {'date': 0}}" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dst.update([['Request', 'Cinema', 'date', '?']])\n", + "dst.state['request_state']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "dst.update([['Inform', 'Hotel', 'Day', 'tuesday'], ['Inform', 'Hotel', 'People', '2'], ['Inform', 'Hotel', 'Stay', '4']])\n", + "dst.state['belief_state']['hotel']" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'user_action': [],\n", + " 'system_action': [],\n", + " 'belief_state': {'cinema': {'book': {'title': 'batman',\n", + " 'date': '',\n", + " 'time': '15:00',\n", + " 'quantity': '',\n", + " 'seats': '',\n", + " 'area': 'na górze na środku',\n", + " 'interval': ''},\n", + " 'semi': {'goal': ''}}},\n", + " 'request_state': {'cinema': {'date': 0}},\n", + " 'terminated': False,\n", + " 'history': []}" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dst.state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Taktyka Prowadzenia Dialogu\n", + "\n", + "Prosta taktyka prowadzenia dialogu dla systemu rezerwacji pokoi hotelowych może składać się z następujących reguł:\n", + "\n", + " 1. Jeżeli użytkownik przekazał w ostatniej turze akt typu `Request`, to udziel odpowiedzi na jego\n", + " pytanie.\n", + "\n", + " 2. Jeżeli użytkownik przekazał w ostatniej turze akt typu `Inform`, to zaproponuj mu hotel\n", + " spełniający zdefiniowane przez niego kryteria.\n", + "\n", + " 3. Jeżeli użytkownik przekazał w ostatniej turze akt typu `Inform` zawierający szczegóły\n", + " rezerwacji, to zarezerwuj pokój.\n", + "\n", + "Metoda `predict` taktyki `SimpleRulePolicy` realizuje reguły przedstawione powyżej." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "from collections import defaultdict\n", + "import copy\n", + "import json\n", + "from copy import deepcopy\n", + "\n", + "from convlab2.policy.policy import Policy\n", + "from convlab2.util.multiwoz.dbquery import Database\n", + "from convlab2.util.multiwoz.multiwoz_slot_trans import REF_SYS_DA, REF_USR_DA\n", + "\n", + "\n", + "class SimpleRulePolicy(Policy):\n", + " def __init__(self):\n", + " Policy.__init__(self)\n", + " self.db = Database()\n", + "\n", + " def predict(self, state):\n", + " self.results = []\n", + " system_action = defaultdict(list)\n", + " user_action = defaultdict(list)\n", + "\n", + " for intent, domain, slot, value in state['user_action']:\n", + " user_action[(domain, intent)].append((slot, value))\n", + "\n", + " for user_act in user_action:\n", + " self.update_system_action(user_act, user_action, state, system_action)\n", + "\n", + " # Reguła 3\n", + " if any(True for slots in user_action.values() for (slot, _) in slots if slot in ['Stay', 'Day', 'People']):\n", + " if self.results:\n", + " system_action = {('Booking', 'Book'): [[\"Ref\", self.results[0].get('Ref', 'N/A')]]}\n", + "\n", + " system_acts = [[intent, domain, slot, value] for (domain, intent), slots in system_action.items() for slot, value in slots]\n", + " state['system_action'] = system_acts\n", + " return system_acts\n", + "\n", + " def update_system_action(self, user_act, user_action, state, system_action):\n", + " domain, intent = user_act\n", + " constraints = [(slot, value) for slot, value in state['belief_state'][domain.lower()]['semi'].items() if value != '']\n", + " self.results = deepcopy(self.db.query(domain.lower(), constraints))\n", + "\n", + " # Reguła 1\n", + " if intent == 'Request':\n", + " if len(self.results) == 0:\n", + " system_action[(domain, 'NoOffer')] = []\n", + " else:\n", + " for slot in user_action[user_act]:\n", + " kb_slot_name = REF_SYS_DA[domain].get(slot[0], slot[0])\n", + "\n", + " if kb_slot_name in self.results[0]:\n", + " system_action[(domain, 'Inform')].append([slot[0], self.results[0].get(kb_slot_name, 'unknown')])\n", + "\n", + " # Reguła 2\n", + " elif intent == 'Inform':\n", + " if len(self.results) == 0:\n", + " system_action[(domain, 'NoOffer')] = []\n", + " else:\n", + " system_action[(domain, 'Inform')].append(['Choice', str(len(self.results))])\n", + " choice = self.results[0]\n", + "\n", + " if domain in [\"Hotel\", \"Attraction\", \"Police\", \"Restaurant\"]:\n", + " system_action[(domain, 'Recommend')].append(['Name', choice['name']])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Podobnie jak w przypadku aktów użytkownika akty systemowe przekazywane do modułu NLG są czteroelementowymi listami złożonymi z:\n", + "\n", + " - nazwy aktu systemowe,\n", + " - nazwy dziedziny, której dotyczy wypowiedź,\n", + " - nazwy slotu,\n", + " - wartości slotu.\n", + "\n", + "Sprawdźmy jakie akty systemowe zwraca taktyka `SimpleRulePolicy` w odpowiedzi na zmieniający się stan dialogu." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "from convlab2.dialog_agent import PipelineAgent\n", + "dst.init_session()\n", + "policy = SimpleRulePolicy()\n", + "agent = PipelineAgent(nlu=None, dst=dst, policy=policy, nlg=None, name='sys')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "agent.response([['Inform', 'Hotel', 'Price', 'cheap'], ['Inform', 'Hotel', 'Parking', 'yes']])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "agent.response([['Inform', 'Hotel', 'Area', 'north']])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "agent.response([['Request', 'Hotel', 'Area', '?']])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "agent.response([['Inform', 'Hotel', 'Day', 'tuesday'], ['Inform', 'Hotel', 'People', '2'], ['Inform', 'Hotel', 'Stay', '4']])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Testy End-to-End\n", + "\n", + "Na koniec przeprowadźmy dialog łącząc w potok nasze moduły\n", + "z modułami NLU i NLG dostępnymi dla MultiWOZ w środowisku `ConvLab-2`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "from convlab2.nlu.svm.multiwoz import SVMNLU\n", + "from convlab2.nlg.template.multiwoz import TemplateNLG\n", + "\n", + "nlu = SVMNLU()\n", + "nlg = TemplateNLG(is_user=False)\n", + "agent = PipelineAgent(nlu=nlu, dst=dst, policy=policy, nlg=nlg, name='sys')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "agent.response(\"I need a cheap hotel with free parking .\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "agent.response(\"Where it is located ?\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "agent.response(\"I would prefer the hotel be in the north part of town .\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", + "Run the following command to install 'ipykernel' into the Python environment. \n", + "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + ] + } + ], + "source": [ + "agent.response(\"Yeah , could you book me a room for 2 people for 4 nights starting Tuesday ?\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Zauważmy, ze nasza prosta taktyka dialogowa zawiera wiele luk, do których należą m.in.:\n", + "\n", + " 1. Niezdolność do udzielenia odpowiedzi na przywitanie, prośbę o pomoc lub restart.\n", + "\n", + " 2. Brak reguł dopytujących użytkownika o szczegóły niezbędne do dokonania rezerwacji takie, jak długość pobytu czy liczba osób.\n", + "\n", + "Bardziej zaawansowane moduły zarządzania dialogiem zbudowane z wykorzystaniem reguł można znaleźć w\n", + "środowisku `ConvLab-2`. Należą do nich m.in. monitor [RuleDST](https://github.com/thu-coai/ConvLab-2/blob/master/convlab2/dst/rule/multiwoz/dst.py) oraz taktyka [RuleBasedMultiwozBot](https://github.com/thu-coai/ConvLab-2/blob/master/convlab2/policy/rule/multiwoz/rule_based_multiwoz_bot.py).\n", + "\n", + "Zadania\n", + "-------\n", + " 1. Zaimplementować w projekcie monitor stanu dialogu.\n", + "\n", + " 2. Zaimplementować w projekcie taktykę prowadzenia dialogu.\n", + "\n", + "Termin: 24.05.2021, godz. 23:59.\n", + "\n", + "Literatura\n", + "----------\n", + " 1. Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ramadan, Milica Gasic, MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling. EMNLP 2018, pp. 5016-5026\n", + " 2. Cathy Pearl, Basic principles for designing voice user interfaces, https://www.oreilly.com/content/basic-principles-for-designing-voice-user-interfaces/ data dostępu: 21 marca 2021\n", + " 3. Cathy Pearl, Designing Voice User Interfaces, Excerpts from Chapter 5: Advanced Voice User Interface Design, https://www.uxmatters.com/mt/archives/2018/01/designing-voice-user-interfaces.php data dostępu: 21 marca 2021" + ] + } + ], + "metadata": { + "author": "Marek Kubis", + "email": "mkubis@amu.edu.pl", + "interpreter": { + "hash": "91e2b0d1baa6ebb76863bdb1d11380bf032a6a1fc1b919194f041a5133852891" + }, + "jupytext": { + "cell_metadata_filter": "-all", + "main_language": "python", + "notebook_metadata_filter": "-all" + }, + "kernelspec": { + "display_name": "Python 3.7.9 ('venv': venv)", + "language": "python", + "name": "python3" + }, + "lang": "pl", + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + }, + "subtitle": "9.Zarządzanie dialogiem z wykorzystaniem reguł[laboratoria]", + "title": "Systemy Dialogowe", + "year": "2021" + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/lab/09-zarzadzanie-dialogiem-reguly.ipynb b/lab/09-zarzadzanie-dialogiem-reguly.ipynb index 4032a32..bce9113 100644 --- a/lab/09-zarzadzanie-dialogiem-reguly.ipynb +++ b/lab/09-zarzadzanie-dialogiem-reguly.ipynb @@ -95,7 +95,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -103,27 +103,43 @@ "text/plain": [ "{'user_action': [],\n", " 'system_action': [],\n", - " 'belief_state': {'cinema': {'book': {'title': '',\n", - " 'date': '',\n", - " 'time': '',\n", - " 'quantity': '',\n", - " 'seats': '',\n", + " 'belief_state': {'police': {'book': {'booked': []}, 'semi': {}},\n", + " 'hotel': {'book': {'booked': [], 'people': '', 'day': '', 'stay': ''},\n", + " 'semi': {'name': '',\n", " 'area': '',\n", - " 'interval': ''},\n", - " 'semi': {'goal': ''}}},\n", + " 'parking': '',\n", + " 'pricerange': '',\n", + " 'stars': '',\n", + " 'internet': '',\n", + " 'type': ''}},\n", + " 'attraction': {'book': {'booked': []},\n", + " 'semi': {'type': '', 'name': '', 'area': ''}},\n", + " 'restaurant': {'book': {'booked': [], 'people': '', 'day': '', 'time': ''},\n", + " 'semi': {'food': '', 'pricerange': '', 'name': '', 'area': ''}},\n", + " 'hospital': {'book': {'booked': []}, 'semi': {'department': ''}},\n", + " 'taxi': {'book': {'booked': []},\n", + " 'semi': {'leaveAt': '',\n", + " 'destination': '',\n", + " 'departure': '',\n", + " 'arriveBy': ''}},\n", + " 'train': {'book': {'booked': [], 'people': ''},\n", + " 'semi': {'leaveAt': '',\n", + " 'destination': '',\n", + " 'day': '',\n", + " 'arriveBy': '',\n", + " 'departure': ''}}},\n", " 'request_state': {},\n", " 'terminated': False,\n", " 'history': []}" ] }, - "execution_count": 3, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# from convlab2.util.multiwoz.state import default_state\n", - "from utils.state import default_state\n", + "from convlab2.util.multiwoz.state import default_state\n", "default_state()" ] }, @@ -141,20 +157,9 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 2, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "\"\\nclass SimpleRuleDST(DST):\\n def __init__(self):\\n DST.__init__(self)\\n self.state = default_state()\\n self.value_dict = json.load(open('l08/ConvLab-2/data/multiwoz/value_dict.json'))\\n\\n def update(self, user_act=None):\\n for intent, domain, slot, value in user_act:\\n domain = domain.lower()\\n intent = intent.lower()\\n\\n if domain in ['unk', 'general', 'booking']:\\n continue\\n\\n if intent == 'inform':\\n k = REF_SYS_DA[domain.capitalize()].get(slot, slot)\\n\\n if k is None:\\n continue\\n\\n domain_dic = self.state['belief_state'][domain]\\n\\n if k in domain_dic['semi']:\\n nvalue = normalize_value(self.value_dict, domain, k, value)\\n self.state['belief_state'][domain]['semi'][k] = nvalue\\n elif k in domain_dic['book']:\\n self.state['belief_state'][domain]['book'][k] = value\\n elif k.lower() in domain_dic['book']:\\n self.state['belief_state'][domain]['book'][k.lower()] = value\\n elif intent == 'request':\\n k = REF_SYS_DA[domain.capitalize()].get(slot, slot)\\n\\n if domain not in self.state['request_state']:\\n self.state['request_state'][domain] = {}\\n if k not in self.state['request_state'][domain]:\\n self.state['request_state'][domain][k] = 0\\n\\n return self.state\\n\\n def init_session(self):\\n self.state = default_state()\\n\"" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "import json\n", "import os\n", @@ -162,55 +167,12 @@ "from convlab2.dst.rule.multiwoz.dst_util import normalize_value\n", "from convlab2.util.multiwoz.multiwoz_slot_trans import REF_SYS_DA\n", "\n", + "\n", "class SimpleRuleDST(DST):\n", " def __init__(self):\n", " DST.__init__(self)\n", " self.state = default_state()\n", - " self.value_dict = json.load(open('utils/value_dict.json'))\n", - "\n", - " def update(self, user_act=None):\n", - " for intent, domain, slot, value in user_act:\n", - " domain = domain.lower()\n", - " intent = intent.lower()\n", - " value = value.lower()\n", - "\n", - " # if domain in ['unk', 'cinema']:\n", - " # continue\n", - " k = slot\n", - "\n", - " if intent == 'inform':\n", - " # k = REF_SYS_DA[domain.capitalize()].get(slot, slot)\n", - " # if k is None:\n", - " # continue\n", - "\n", - " domain_dic = self.state['belief_state'][domain]\n", - "\n", - " if k in domain_dic['semi']:\n", - " # nvalue = normalize_value(self.value_dict, domain, k, value)\n", - " self.state['belief_state'][domain]['semi'][k] = value\n", - " elif k in domain_dic['book']:\n", - " self.state['belief_state'][domain]['book'][k] = value\n", - " elif k.lower() in domain_dic['book']:\n", - " self.state['belief_state'][domain]['book'][k.lower()] = value\n", - " elif intent == 'request':\n", - " # k = REF_SYS_DA[domain.capitalize()].get(slot, slot)\n", - "\n", - " if domain not in self.state['request_state']:\n", - " self.state['request_state'][domain] = {}\n", - " if k not in self.state['request_state'][domain]:\n", - " self.state['request_state'][domain][k] = 0\n", - "\n", - " return self.state\n", - "\n", - " def init_session(self):\n", - " self.state = default_state()\n", - "\n", - "'''\n", - "class SimpleRuleDST(DST):\n", - " def __init__(self):\n", - " DST.__init__(self)\n", - " self.state = default_state()\n", - " self.value_dict = json.load(open('l08/ConvLab-2/data/multiwoz/value_dict.json'))\n", + " self.value_dict = json.load(open('ConvLab-2/data/multiwoz/value_dict.json'))\n", "\n", " def update(self, user_act=None):\n", " for intent, domain, slot, value in user_act:\n", @@ -246,8 +208,7 @@ " return self.state\n", "\n", " def init_session(self):\n", - " self.state = default_state()\n", - "'''\n" + " self.state = default_state()\n" ] }, { @@ -268,7 +229,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 3, "metadata": { "lines_to_next_cell": 0 }, @@ -278,20 +239,37 @@ "text/plain": [ "{'user_action': [],\n", " 'system_action': [],\n", - " 'belief_state': {'cinema': {'book': {'title': '',\n", - " 'date': '',\n", - " 'time': '',\n", - " 'quantity': '',\n", - " 'seats': '',\n", + " 'belief_state': {'police': {'book': {'booked': []}, 'semi': {}},\n", + " 'hotel': {'book': {'booked': [], 'people': '', 'day': '', 'stay': ''},\n", + " 'semi': {'name': '',\n", " 'area': '',\n", - " 'interval': ''},\n", - " 'semi': {'goal': ''}}},\n", + " 'parking': '',\n", + " 'pricerange': '',\n", + " 'stars': '',\n", + " 'internet': '',\n", + " 'type': ''}},\n", + " 'attraction': {'book': {'booked': []},\n", + " 'semi': {'type': '', 'name': '', 'area': ''}},\n", + " 'restaurant': {'book': {'booked': [], 'people': '', 'day': '', 'time': ''},\n", + " 'semi': {'food': '', 'pricerange': '', 'name': '', 'area': ''}},\n", + " 'hospital': {'book': {'booked': []}, 'semi': {'department': ''}},\n", + " 'taxi': {'book': {'booked': []},\n", + " 'semi': {'leaveAt': '',\n", + " 'destination': '',\n", + " 'departure': '',\n", + " 'arriveBy': ''}},\n", + " 'train': {'book': {'booked': [], 'people': ''},\n", + " 'semi': {'leaveAt': '',\n", + " 'destination': '',\n", + " 'day': '',\n", + " 'arriveBy': '',\n", + " 'departure': ''}}},\n", " 'request_state': {},\n", " 'terminated': False,\n", " 'history': []}" ] }, - "execution_count": 35, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -303,7 +281,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 4, "metadata": { "lines_to_next_cell": 0 }, @@ -311,29 +289,29 @@ { "data": { "text/plain": [ - "{'book': {'title': 'batman',\n", - " 'date': '',\n", - " 'time': '15:00',\n", - " 'quantity': '',\n", - " 'seats': '',\n", + "{'book': {'booked': [], 'people': '', 'day': '', 'stay': ''},\n", + " 'semi': {'name': '',\n", " 'area': '',\n", - " 'interval': ''},\n", - " 'semi': {'goal': ''}}" + " 'parking': 'yes',\n", + " 'pricerange': 'cheap',\n", + " 'stars': '',\n", + " 'internet': '',\n", + " 'type': ''}}" ] }, - "execution_count": 36, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "dst.update([['Inform', 'Cinema', 'time', '15:00'], ['Inform', 'Cinema', 'title', 'Batman']])\n", - "dst.state['belief_state']['cinema']" + "dst.update([['Inform', 'Hotel', 'Price', 'cheap'], ['Inform', 'Hotel', 'Parking', 'yes']])\n", + "dst.state['belief_state']['hotel']" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 5, "metadata": { "lines_to_next_cell": 0 }, @@ -341,29 +319,29 @@ { "data": { "text/plain": [ - "{'book': {'title': 'batman',\n", - " 'date': '',\n", - " 'time': '15:00',\n", - " 'quantity': '',\n", - " 'seats': '',\n", - " 'area': 'na górze na środku',\n", - " 'interval': ''},\n", - " 'semi': {'goal': ''}}" + "{'book': {'booked': [], 'people': '', 'day': '', 'stay': ''},\n", + " 'semi': {'name': '',\n", + " 'area': 'north',\n", + " 'parking': 'yes',\n", + " 'pricerange': 'cheap',\n", + " 'stars': '',\n", + " 'internet': '',\n", + " 'type': ''}}" ] }, - "execution_count": 37, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "dst.update([['Inform', 'Cinema', 'area', 'na górze na środku']])\n", - "dst.state['belief_state']['cinema']" + "dst.update([['Inform', 'Hotel', 'Area', 'north']])\n", + "dst.state['belief_state']['hotel']" ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 6, "metadata": { "lines_to_next_cell": 0 }, @@ -371,45 +349,42 @@ { "data": { "text/plain": [ - "{'cinema': {'date': 0}}" + "{'hotel': {'area': 0}}" ] }, - "execution_count": 38, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "dst.update([['Request', 'Cinema', 'date', '?']])\n", + "dst.update([['Request', 'Hotel', 'Area', '?']])\n", "dst.state['request_state']" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "lines_to_next_cell": 0 }, "outputs": [ { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] + "data": { + "text/plain": [ + "{'book': {'booked': [], 'people': '2', 'day': 'tuesday', 'stay': '4'},\n", + " 'semi': {'name': '',\n", + " 'area': 'north',\n", + " 'parking': 'yes',\n", + " 'pricerange': 'cheap',\n", + " 'stars': '',\n", + " 'internet': '',\n", + " 'type': ''}}" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -419,7 +394,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -427,20 +402,40 @@ "text/plain": [ "{'user_action': [],\n", " 'system_action': [],\n", - " 'belief_state': {'cinema': {'book': {'title': 'batman',\n", - " 'date': '',\n", - " 'time': '15:00',\n", - " 'quantity': '',\n", - " 'seats': '',\n", - " 'area': 'na górze na środku',\n", - " 'interval': ''},\n", - " 'semi': {'goal': ''}}},\n", - " 'request_state': {'cinema': {'date': 0}},\n", + " 'belief_state': {'police': {'book': {'booked': []}, 'semi': {}},\n", + " 'hotel': {'book': {'booked': [],\n", + " 'people': '2',\n", + " 'day': 'tuesday',\n", + " 'stay': '4'},\n", + " 'semi': {'name': '',\n", + " 'area': 'north',\n", + " 'parking': 'yes',\n", + " 'pricerange': 'cheap',\n", + " 'stars': '',\n", + " 'internet': '',\n", + " 'type': ''}},\n", + " 'attraction': {'book': {'booked': []},\n", + " 'semi': {'type': '', 'name': '', 'area': ''}},\n", + " 'restaurant': {'book': {'booked': [], 'people': '', 'day': '', 'time': ''},\n", + " 'semi': {'food': '', 'pricerange': '', 'name': '', 'area': ''}},\n", + " 'hospital': {'book': {'booked': []}, 'semi': {'department': ''}},\n", + " 'taxi': {'book': {'booked': []},\n", + " 'semi': {'leaveAt': '',\n", + " 'destination': '',\n", + " 'departure': '',\n", + " 'arriveBy': ''}},\n", + " 'train': {'book': {'booked': [], 'people': ''},\n", + " 'semi': {'leaveAt': '',\n", + " 'destination': '',\n", + " 'day': '',\n", + " 'arriveBy': '',\n", + " 'departure': ''}}},\n", + " 'request_state': {'hotel': {'area': 0}},\n", " 'terminated': False,\n", " 'history': []}" ] }, - "execution_count": 39, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -471,30 +466,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [ - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - } - ], + "outputs": [], "source": [ "from collections import defaultdict\n", "import copy\n", @@ -575,32 +549,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "lines_to_next_cell": 0 }, - "outputs": [ - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - } - ], + "outputs": [], "source": [ "from convlab2.dialog_agent import PipelineAgent\n", "dst.init_session()\n", @@ -610,30 +563,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "lines_to_next_cell": 0 }, "outputs": [ { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] + "data": { + "text/plain": [ + "[['Inform', 'Hotel', 'Choice', '10'],\n", + " ['Recommend', 'Hotel', 'Name', 'alexander bed and breakfast']]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -642,30 +586,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "lines_to_next_cell": 0 }, "outputs": [ { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] + "data": { + "text/plain": [ + "[['Inform', 'Hotel', 'Choice', '2'],\n", + " ['Recommend', 'Hotel', 'Name', 'city centre north b and b']]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -674,30 +609,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "lines_to_next_cell": 0 }, "outputs": [ { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] + "data": { + "text/plain": [ + "[['Inform', 'Hotel', 'Area', 'north']]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -706,28 +631,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [ { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] + "data": { + "text/plain": [ + "[['Book', 'Booking', 'Ref', '00000013']]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -746,27 +661,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [ { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + "name": "stdout", + "output_type": "stream", + "text": [ + "[]\n", + "loading saved Classifier\n", + "loaded.\n" ] } ], @@ -781,29 +685,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "lines_to_next_cell": 0 }, "outputs": [ { - "ename": "", - "evalue": "", + "ename": "AttributeError", + "evalue": "'SVC' object has no attribute '_impl'", "output_type": "error", "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_13500\\3260802613.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0magent\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mresponse\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"I need a cheap hotel with free parking .\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\dialog_agent\\agent.py\u001b[0m in \u001b[0;36mresponse\u001b[1;34m(self, observation)\u001b[0m\n\u001b[0;32m 120\u001b[0m \u001b[1;31m# get dialog act\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 121\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnlu\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 122\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minput_action\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnlu\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobservation\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 123\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 124\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minput_action\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mobservation\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\multiwoz\\nlu.py\u001b[0m in \u001b[0;36mpredict\u001b[1;34m(self, utterance, context)\u001b[0m\n\u001b[0;32m 74\u001b[0m ]\n\u001b[0;32m 75\u001b[0m }\n\u001b[1;32m---> 76\u001b[1;33m \u001b[0mslu_hyps\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mc\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecode_sent\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msentinfo\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"decode\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"output\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 77\u001b[0m \u001b[0mact_list\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 78\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mhyp\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mslu_hyps\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\Classifier.py\u001b[0m in \u001b[0;36mdecode_sent\u001b[1;34m(self, sentinfo, output_fname, config)\u001b[0m\n\u001b[0;32m 320\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 321\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mextractFeatures2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msentinfo\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mlog_input_key\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlog_input_key\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 322\u001b[1;33m \u001b[0mdecode_results\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 323\u001b[0m \u001b[0mcounter\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdefaultdict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 324\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\Classifier.py\u001b[0m in \u001b[0;36mdecode\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 258\u001b[0m \u001b[0mbaseXs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbaseXs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mindex\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mindex\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbaseX_pointers\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 259\u001b[0m \u001b[0mX\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtoSparse\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbaseXs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdictionary\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 260\u001b[1;33m \u001b[0mresults\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclassifiers\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 261\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresults\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 262\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\Classifier.py\u001b[0m in \u001b[0;36mpredict\u001b[1;34m(self, X)\u001b[0m\n\u001b[0;32m 496\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 497\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 498\u001b[1;33m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 499\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 500\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\Develop\\wmi\\AITECH\\sem1\\Systemy dialogowe\\lab\\venv\\lib\\site-packages\\sklearn\\svm\\base.py\u001b[0m in \u001b[0;36mpredict_proba\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 588\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[1;33m.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 589\u001b[0m \"\"\"\n\u001b[1;32m--> 590\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_check_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 591\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_predict_proba\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 592\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\Develop\\wmi\\AITECH\\sem1\\Systemy dialogowe\\lab\\venv\\lib\\site-packages\\sklearn\\svm\\base.py\u001b[0m in \u001b[0;36m_check_proba\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 557\u001b[0m raise AttributeError(\"predict_proba is not available when \"\n\u001b[0;32m 558\u001b[0m \" probability=False\")\n\u001b[1;32m--> 559\u001b[1;33m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_impl\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32min\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'c_svc'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'nu_svc'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 560\u001b[0m raise AttributeError(\"predict_proba only implemented for SVC\"\n\u001b[0;32m 561\u001b[0m \" and NuSVC\")\n", + "\u001b[1;31mAttributeError\u001b[0m: 'SVC' object has no attribute '_impl'" ] } ], @@ -813,29 +715,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "lines_to_next_cell": 0 }, "outputs": [ { - "ename": "", - "evalue": "", + "ename": "AttributeError", + "evalue": "'SVC' object has no attribute '_impl'", "output_type": "error", "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_13500\\2723043776.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0magent\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mresponse\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Where it is located ?\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\dialog_agent\\agent.py\u001b[0m in \u001b[0;36mresponse\u001b[1;34m(self, observation)\u001b[0m\n\u001b[0;32m 120\u001b[0m \u001b[1;31m# get dialog act\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 121\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnlu\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 122\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minput_action\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnlu\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobservation\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 123\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 124\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minput_action\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mobservation\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\multiwoz\\nlu.py\u001b[0m in \u001b[0;36mpredict\u001b[1;34m(self, utterance, context)\u001b[0m\n\u001b[0;32m 74\u001b[0m ]\n\u001b[0;32m 75\u001b[0m }\n\u001b[1;32m---> 76\u001b[1;33m \u001b[0mslu_hyps\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mc\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecode_sent\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msentinfo\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"decode\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"output\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 77\u001b[0m \u001b[0mact_list\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 78\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mhyp\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mslu_hyps\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\Classifier.py\u001b[0m in \u001b[0;36mdecode_sent\u001b[1;34m(self, sentinfo, output_fname, config)\u001b[0m\n\u001b[0;32m 320\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 321\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mextractFeatures2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msentinfo\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mlog_input_key\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlog_input_key\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 322\u001b[1;33m \u001b[0mdecode_results\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 323\u001b[0m \u001b[0mcounter\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdefaultdict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 324\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\Classifier.py\u001b[0m in \u001b[0;36mdecode\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 258\u001b[0m \u001b[0mbaseXs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbaseXs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mindex\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mindex\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbaseX_pointers\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 259\u001b[0m \u001b[0mX\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtoSparse\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbaseXs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdictionary\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 260\u001b[1;33m \u001b[0mresults\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclassifiers\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 261\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresults\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 262\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\Classifier.py\u001b[0m in \u001b[0;36mpredict\u001b[1;34m(self, X)\u001b[0m\n\u001b[0;32m 496\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 497\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 498\u001b[1;33m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 499\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 500\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\Develop\\wmi\\AITECH\\sem1\\Systemy dialogowe\\lab\\venv\\lib\\site-packages\\sklearn\\svm\\base.py\u001b[0m in \u001b[0;36mpredict_proba\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 588\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[1;33m.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 589\u001b[0m \"\"\"\n\u001b[1;32m--> 590\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_check_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 591\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_predict_proba\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 592\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\Develop\\wmi\\AITECH\\sem1\\Systemy dialogowe\\lab\\venv\\lib\\site-packages\\sklearn\\svm\\base.py\u001b[0m in \u001b[0;36m_check_proba\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 557\u001b[0m raise AttributeError(\"predict_proba is not available when \"\n\u001b[0;32m 558\u001b[0m \" probability=False\")\n\u001b[1;32m--> 559\u001b[1;33m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_impl\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32min\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'c_svc'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'nu_svc'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 560\u001b[0m raise AttributeError(\"predict_proba only implemented for SVC\"\n\u001b[0;32m 561\u001b[0m \" and NuSVC\")\n", + "\u001b[1;31mAttributeError\u001b[0m: 'SVC' object has no attribute '_impl'" ] } ], @@ -845,29 +745,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "lines_to_next_cell": 0 }, "outputs": [ { - "ename": "", - "evalue": "", + "ename": "AttributeError", + "evalue": "'SVC' object has no attribute '_impl'", "output_type": "error", "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_13500\\871593950.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0magent\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mresponse\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"I would prefer the hotel be in the north part of town .\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\dialog_agent\\agent.py\u001b[0m in \u001b[0;36mresponse\u001b[1;34m(self, observation)\u001b[0m\n\u001b[0;32m 120\u001b[0m \u001b[1;31m# get dialog act\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 121\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnlu\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 122\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minput_action\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnlu\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobservation\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 123\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 124\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minput_action\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mobservation\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\multiwoz\\nlu.py\u001b[0m in \u001b[0;36mpredict\u001b[1;34m(self, utterance, context)\u001b[0m\n\u001b[0;32m 74\u001b[0m ]\n\u001b[0;32m 75\u001b[0m }\n\u001b[1;32m---> 76\u001b[1;33m \u001b[0mslu_hyps\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mc\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecode_sent\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msentinfo\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"decode\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"output\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 77\u001b[0m \u001b[0mact_list\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 78\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mhyp\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mslu_hyps\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\Classifier.py\u001b[0m in \u001b[0;36mdecode_sent\u001b[1;34m(self, sentinfo, output_fname, config)\u001b[0m\n\u001b[0;32m 320\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 321\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mextractFeatures2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msentinfo\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mlog_input_key\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlog_input_key\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 322\u001b[1;33m \u001b[0mdecode_results\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 323\u001b[0m \u001b[0mcounter\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdefaultdict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 324\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\Classifier.py\u001b[0m in \u001b[0;36mdecode\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 258\u001b[0m \u001b[0mbaseXs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbaseXs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mindex\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mindex\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbaseX_pointers\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 259\u001b[0m \u001b[0mX\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtoSparse\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbaseXs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdictionary\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 260\u001b[1;33m \u001b[0mresults\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclassifiers\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mthis_tuple\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 261\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mresults\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 262\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\develop\\wmi\\aitech\\sem1\\systemy dialogowe\\lab\\convlab-2\\convlab2\\nlu\\svm\\Classifier.py\u001b[0m in \u001b[0;36mpredict\u001b[1;34m(self, X)\u001b[0m\n\u001b[0;32m 496\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 497\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 498\u001b[1;33m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 499\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 500\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\Develop\\wmi\\AITECH\\sem1\\Systemy dialogowe\\lab\\venv\\lib\\site-packages\\sklearn\\svm\\base.py\u001b[0m in \u001b[0;36mpredict_proba\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 588\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[1;33m.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 589\u001b[0m \"\"\"\n\u001b[1;32m--> 590\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_check_proba\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 591\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_predict_proba\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 592\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\Develop\\wmi\\AITECH\\sem1\\Systemy dialogowe\\lab\\venv\\lib\\site-packages\\sklearn\\svm\\base.py\u001b[0m in \u001b[0;36m_check_proba\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 557\u001b[0m raise AttributeError(\"predict_proba is not available when \"\n\u001b[0;32m 558\u001b[0m \" probability=False\")\n\u001b[1;32m--> 559\u001b[1;33m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_impl\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32min\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'c_svc'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'nu_svc'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 560\u001b[0m raise AttributeError(\"predict_proba only implemented for SVC\"\n\u001b[0;32m 561\u001b[0m \" and NuSVC\")\n", + "\u001b[1;31mAttributeError\u001b[0m: 'SVC' object has no attribute '_impl'" ] } ], @@ -879,28 +777,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mRunning cells with 'Python 3.6.15 ('sysdial')' requires ipykernel package.\n", - "Run the following command to install 'ipykernel' into the Python environment. \n", - "Command: 'conda install -n sysdial ipykernel --update-deps --force-reinstall'" - ] - } - ], + "outputs": [], "source": [ "agent.response(\"Yeah , could you book me a room for 2 people for 4 nights starting Tuesday ?\")" ] diff --git a/src/components/DP.py b/src/components/DP.py index 7f5feed..927e69d 100644 --- a/src/components/DP.py +++ b/src/components/DP.py @@ -1,11 +1,31 @@ -# Martyna +from urllib import request + + class DP: - def __init__(self, slots): - self.slots = slots + def __init__(self): + pass - def getAct(slots): - # iterate over slots - # find empty - # returns system act - pass \ No newline at end of file + def getAction(self, lastUserAct, emptySlots, systemSlots): + systemAct = None + slotVal = None + if ((lastUserAct == "hello") | (lastUserAct == "inform") | (lastUserAct == None)): + # there are no empty slots + if not emptySlots: + systemAct = "inform" + slotVal = systemSlots + # there are empty slots + else: + for slot in systemSlots: + if slot in emptySlots: + systemAct = "request" + slotVal = slot + break + return ["Cinema", systemAct, slotVal, ""] + elif (lastUserAct == "request"): + # todo policy for user request + return ["Cinema", "", "", ""] + else: + systemAct = "repeat" + return ["Cinema", systemAct, "", ""] + \ No newline at end of file diff --git a/src/components/DST.py b/src/components/DST.py index cb23947..1699122 100644 --- a/src/components/DST.py +++ b/src/components/DST.py @@ -5,10 +5,13 @@ class DST: # self.value_dict = json.load(open('utils/value_dict.json')) def update(self, user_act=None): + intentVal = None for intent, domain, slot, value in user_act: domain = domain.lower() intent = intent.lower() value = value.lower() + + if intentVal is None : intentVal = intent k = slot @@ -22,15 +25,38 @@ class DST: self.state['belief_state'][domain]['book'][k] = value elif k.lower() in domain_dic['book']: self.state['belief_state'][domain]['book'][k.lower()] = value - elif intent == 'request': + elif intent == 'reqmore': if domain not in self.state['request_state']: self.state['request_state'][domain] = {} if k not in self.state['request_state'][domain]: self.state['request_state'][domain][k] = 0 - + self.state['user_action'].append(intentVal) return self.state + def addSystemAct(self, act): + self.state["system_action"].append(act) + + def getLastUserAct(self): + try: + return self.state["user_action"][-1] + except: + return None + + def getEmptySlots(self): + result = [] + for key in self.state['belief_state']["cinema"]["book"].keys(): + if self.state['belief_state']["cinema"]["book"][key] == "": + result.append(key) + return result + + def getSystemSlots(self): + result = [] + for key in self.state['belief_state']["cinema"]["book"].keys(): + if key != "interval": + result.append(key) + return result + def init_session(self): self.state = self.default_state() diff --git a/src/dialogue_system.py b/src/dialogue_system.py index 9de65ca..41ca86e 100644 --- a/src/dialogue_system.py +++ b/src/dialogue_system.py @@ -1,6 +1,7 @@ from components.NLU import NLU from components.NLG import NLG from components.DST import DST +from components.DP import DP def chatbot(): @@ -9,6 +10,7 @@ def chatbot(): # NLU nlu = NLU() dst = DST() + dp = DP() # hello message print("wpisz /exit aby zakończyć") @@ -22,6 +24,10 @@ def chatbot(): isActive = False else: nluPred = nlu.predict(sentence=userMessage) + # print(nluPred) dst.update(nluPred) - print(dst.state) + # print(dst.state) + dpAct = dp.getAction(dst.getLastUserAct(), dst.getEmptySlots(), dst.getSystemSlots()) + print(dpAct) + # todo update DST system act chatbot() \ No newline at end of file