bigram neural
This commit is contained in:
parent
798d04eb15
commit
501182a0f1
131
bigram-neural/model-predict.py
Normal file
131
bigram-neural/model-predict.py
Normal file
@ -0,0 +1,131 @@
|
||||
import pickle
|
||||
|
||||
from torch.utils.data import IterableDataset
|
||||
import itertools
|
||||
from torch import nn
|
||||
import torch
|
||||
import lzma
|
||||
from torch.utils.data import DataLoader
|
||||
import pandas as pd
|
||||
import tqdm
|
||||
import regex as re
|
||||
from nltk import word_tokenize
|
||||
import csv
|
||||
import nltk
|
||||
|
||||
vocabulary_size = 20000
|
||||
most_common_en_word = "the:0.4 be:0.2 to:0.1 of:0.05 and:0.025 a:0.0125 :0.2125"
|
||||
nltk.download("punkt")
|
||||
|
||||
vocab = None
|
||||
with open('vocabulary.pickle', 'rb') as handle:
|
||||
vocab = pickle.load(handle)
|
||||
|
||||
def look_ahead_iterator(gen):
|
||||
prev = None
|
||||
for item in gen:
|
||||
if prev is not None:
|
||||
yield (prev, item)
|
||||
prev = item
|
||||
|
||||
def get_words_from_line(line):
|
||||
line = line.rstrip()
|
||||
yield '<s>'
|
||||
for t in line.split(' '):
|
||||
yield t
|
||||
yield '</s>'
|
||||
|
||||
def get_word_lines_from_file(file_name):
|
||||
with lzma.open(file_name, 'r') as fh:
|
||||
for line in fh:
|
||||
yield get_words_from_line(line.decode('utf-8'))
|
||||
|
||||
class Bigrams(IterableDataset):
|
||||
def __init__(self, text_file, vocabulary_size):
|
||||
self.vocab = vocab
|
||||
self.vocab.set_default_index(self.vocab['<unk>'])
|
||||
self.vocabulary_size = vocabulary_size
|
||||
self.text_file = text_file
|
||||
|
||||
def __iter__(self):
|
||||
return look_ahead_iterator(
|
||||
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
|
||||
|
||||
train_dataset = Bigrams('train/in.tsv.xz', vocabulary_size)
|
||||
|
||||
# print(next(iter(train_dataset)))
|
||||
#
|
||||
# print(vocab.lookup_tokens([23, 0]))
|
||||
|
||||
embed_size = 100
|
||||
|
||||
class SimpleBigramNeuralLanguageModel(nn.Module):
|
||||
def __init__(self, vocabulary_size, embedding_size):
|
||||
super(SimpleBigramNeuralLanguageModel, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
nn.Embedding(vocabulary_size, embedding_size),
|
||||
nn.Linear(embedding_size, vocabulary_size),
|
||||
nn.Softmax()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
|
||||
|
||||
device = 'cuda'
|
||||
model = SimpleBigramNeuralLanguageModel(vocabulary_size, embed_size).to(device)
|
||||
model.load_state_dict(torch.load('model1.bin'))
|
||||
model.eval()
|
||||
|
||||
def predict_probs(word1):
|
||||
ixs = torch.tensor(vocab.forward([word1])).to(device)
|
||||
|
||||
out = model(ixs)
|
||||
top = torch.topk(out[0], 10)
|
||||
top_indices = top.indices.tolist()
|
||||
top_probs = top.values.tolist()
|
||||
top_words = vocab.lookup_tokens(top_indices)
|
||||
result_model = (list(zip(top_words, top_indices, top_probs)))
|
||||
|
||||
n_best = 5 # choose the top 5 predictions
|
||||
|
||||
# Remove any <unk> tokens from the predictions
|
||||
unk_prob = 0
|
||||
new_predictions = []
|
||||
for pred in result_model:
|
||||
if pred[0] == '<unk>':
|
||||
unk_prob = pred[2]
|
||||
else:
|
||||
new_predictions.append(pred)
|
||||
|
||||
# Sort the predictions by probability and choose the top n
|
||||
top_n = new_predictions[:n_best]
|
||||
|
||||
# Format the predictions as a string
|
||||
output_str = ''
|
||||
for i, pred in enumerate(top_n):
|
||||
output_str += pred[0] + ':' + str(round(pred[2], 3)) + ' '
|
||||
output_str += ':{}'.format(round(1 - sum([pred[2] for pred in top_n]) - unk_prob, 3))
|
||||
return output_str
|
||||
|
||||
|
||||
def prepare_text(text):
|
||||
text = text.lower().replace("-\\n", "").replace("\\n", " ")
|
||||
text = re.sub(r"\p{P}", "", text)
|
||||
return text
|
||||
|
||||
def predict_file(file):
|
||||
data = pd.read_csv(f'{file}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)
|
||||
with open(f'{file}/out.tsv', 'w', encoding='utf-8') as file_out:
|
||||
for _, row in tqdm.tqdm(data.iterrows()):
|
||||
before = word_tokenize(prepare_text(str(row[6])))
|
||||
if len(before) < 2:
|
||||
prediction = most_common_en_word
|
||||
else:
|
||||
prediction = predict_probs(before[-1])
|
||||
file_out.write(prediction + '\n')
|
||||
|
||||
predict_file('dev-0')
|
||||
|
||||
predict_file('test-A')
|
35
bigram-neural/train.py
Normal file
35
bigram-neural/train.py
Normal file
@ -0,0 +1,35 @@
|
||||
from itertools import islice
|
||||
import regex as re
|
||||
import sys
|
||||
from torchtext.vocab import build_vocab_from_iterator
|
||||
import lzma
|
||||
import pickle
|
||||
|
||||
def get_words_from_line(line):
|
||||
line = line.rstrip()
|
||||
yield '<s>'
|
||||
for t in line.split(' '):
|
||||
yield t
|
||||
yield '</s>'
|
||||
|
||||
n_size = 100000
|
||||
def get_word_lines_from_file(file_name):
|
||||
with lzma.open(file_name, 'r') as fh:
|
||||
n = 0
|
||||
for line in fh:
|
||||
n += 1
|
||||
yield get_words_from_line(line.decode('utf-8'))
|
||||
if n == n_size:
|
||||
break
|
||||
|
||||
vocab_size = 20000
|
||||
|
||||
vocab = build_vocab_from_iterator(
|
||||
get_word_lines_from_file('train/in.tsv.xz'),
|
||||
max_tokens = vocab_size,
|
||||
specials = ['<unk>'])
|
||||
|
||||
with open('vocabulary.pickle', 'wb') as handle:
|
||||
pickle.dump(vocab, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
vocab['human']
|
104
bigram-neural/train2.py
Normal file
104
bigram-neural/train2.py
Normal file
@ -0,0 +1,104 @@
|
||||
import pickle
|
||||
|
||||
from torch.utils.data import IterableDataset
|
||||
import itertools
|
||||
from torch import nn
|
||||
import torch
|
||||
import lzma
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import tqdm
|
||||
|
||||
vocabulary_size = 20000
|
||||
|
||||
vocab = None
|
||||
with open('vocabulary.pickle', 'rb') as handle:
|
||||
vocab = pickle.load(handle)
|
||||
|
||||
def look_ahead_iterator(gen):
|
||||
prev = None
|
||||
for item in gen:
|
||||
if prev is not None:
|
||||
yield (prev, item)
|
||||
prev = item
|
||||
|
||||
def get_words_from_line(line):
|
||||
line = line.rstrip()
|
||||
yield '<s>'
|
||||
for t in line.split(' '):
|
||||
yield t
|
||||
yield '</s>'
|
||||
|
||||
def get_word_lines_from_file(file_name):
|
||||
with lzma.open(file_name, 'r') as fh:
|
||||
for line in fh:
|
||||
yield get_words_from_line(line.decode('utf-8'))
|
||||
|
||||
class Bigrams(IterableDataset):
|
||||
def __init__(self, text_file, vocabulary_size):
|
||||
self.vocab = vocab
|
||||
self.vocab.set_default_index(self.vocab['<unk>'])
|
||||
self.vocabulary_size = vocabulary_size
|
||||
self.text_file = text_file
|
||||
|
||||
def __iter__(self):
|
||||
return look_ahead_iterator(
|
||||
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
|
||||
|
||||
train_dataset = Bigrams('train/in.tsv.xz', vocabulary_size)
|
||||
|
||||
# print(next(iter(train_dataset)))
|
||||
#
|
||||
# print(vocab.lookup_tokens([23, 0]))
|
||||
|
||||
embed_size = 100
|
||||
|
||||
class SimpleBigramNeuralLanguageModel(nn.Module):
|
||||
def __init__(self, vocabulary_size, embedding_size):
|
||||
super(SimpleBigramNeuralLanguageModel, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
nn.Embedding(vocabulary_size, embedding_size),
|
||||
nn.Linear(embedding_size, vocabulary_size),
|
||||
nn.Softmax()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
device = 'cuda'
|
||||
model = SimpleBigramNeuralLanguageModel(vocabulary_size, embed_size).to(device)
|
||||
data = DataLoader(train_dataset, batch_size=500)
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
criterion = torch.nn.NLLLoss()
|
||||
|
||||
model.train()
|
||||
step = 0
|
||||
for x, y in tqdm.tqdm(data):
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
optimizer.zero_grad()
|
||||
ypredicted = model(x)
|
||||
loss = criterion(torch.log(ypredicted), y)
|
||||
if step % 100 == 0:
|
||||
print(step, loss)
|
||||
if step > 5000:
|
||||
break
|
||||
step += 1
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
torch.save(model.state_dict(), 'model1.bin')
|
||||
|
||||
device = 'cuda'
|
||||
model = SimpleBigramNeuralLanguageModel(vocabulary_size, embed_size).to(device)
|
||||
model.load_state_dict(torch.load('model1.bin'))
|
||||
model.eval()
|
||||
|
||||
ixs = torch.tensor(vocab.forward(['that'])).to(device)
|
||||
|
||||
out = model(ixs)
|
||||
top = torch.topk(out[0], 10)
|
||||
top_indices = top.indices.tolist()
|
||||
top_probs = top.values.tolist()
|
||||
top_words = vocab.lookup_tokens(top_indices)
|
||||
print(list(zip(top_words, top_indices, top_probs)))
|
10519
dev-0/out.tsv
Normal file
10519
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
7414
test-A/out.tsv
Normal file
7414
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user