import csv import pandas as pd import regex as re import nltk import tqdm from nltk import bigrams, word_tokenize from collections import Counter, defaultdict import string nltk.download("punkt") most_common_en_word = "the:0.4 be:0.2 to:0.1 of:0.05 and:0.025 a:0.0125 :0.2125" train_count = 125000 # train set train_data = pd.read_csv("train/in.tsv.xz", sep="\t", on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=train_count) # training labels train_labels = pd.read_csv("train/expected.tsv", sep="\t", on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE,nrows=train_count) dev_data = pd.read_csv("dev-0/in.tsv.xz", sep="\t", on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE) test_data = pd.read_csv("test-A/in.tsv.xz", sep="\t", on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE) def prepare_text(text): text = text.lower().replace("-\\n", "").replace("\\n", " ") text = re.sub(r"\p{P}", "", text) return text def train_bigrams(): for _, row in tqdm.tqdm(train_data.iterrows()): text = prepare_text(str(row["final"])) words = word_tokenize(text) for w1, w2 in bigrams(words, pad_right=True, pad_left=True): if all([w1, w2]): model[w2][w1] += 1 for w_pair in model: ngram_count = float(sum(model[w_pair].values())) for w2 in model[w_pair]: model[w_pair][w2] /= ngram_count def predict_probs(word): raw_prediction = dict(model[word]) prediction = dict(Counter(raw_prediction).most_common(6)) total_prob = 0.0 str_prediction = "" for w, prob in prediction.items(): total_prob += prob str_prediction += f"{w}:{prob} " if total_prob == 0.0: return most_common_en_word remaining_prob = 1 - total_prob if remaining_prob < 0.01: remaining_prob = 0.01 str_prediction += f":{remaining_prob}" return str_prediction def write_output(): with open("dev-0/out.tsv", "w") as file: for _, row in dev_data.iterrows(): text = prepare_text(str(row[7])) words = word_tokenize(text) if len(words) < 2: prediction = most_common_en_word else: prediction = predict_probs(words[0]) file.write(prediction + "\n") with open("test-A/out.tsv", "w") as file: for _, row in test_data.iterrows(): text = prepare_text(str(row[7])) words = word_tokenize(text) if len(words) < 2: prediction = most_common_en_word else: prediction = predict_probs(words[0]) file.write(prediction + "\n") if __name__ == "__main__": # Preapare train data print("Preparing data...") train_data = train_data[[6, 7]] train_data = pd.concat([train_data, train_labels], axis=1) train_data["final"] = train_data[6] + train_data[0] + train_data[7] # declare model print("Preparing model...") model = defaultdict(lambda: defaultdict(lambda: 0)) # train model print("Model training...") train_bigrams() # write outputs print("Writing outputs...") write_output()