2. s444417-training uruchamia się automatycznie po zakończeniu joba s444417-create-dataset, plik Jenkinsfile, przy pomocy build job. Kopiuje zbiór danych przy pomocy copyArtifact w pliku Jenkinsfile3
2. evaluacja modelu metodą evaluate zawołana na modelu w pliku trainScript.py.Zapisanie wyniku do pliku trainResults.csv, w Jenkinsfile.eval archiveArtifact
3. Jenkinsfile.eval w stagu "Copy prev build artifact" kopiuje trainResults.csv a jeśli go nie ma to catch łapie error, skrypt trainScript.py też obsługuje brak takiego pliku, bo otwiera go w trybie "a+"
1. plik lab8/trainScript.py, używa MLflow, zawiera input_example,
2. model z artifactów pobierany w lab8/Jenkinsfile.artifact, predykcja zrobiona skryptem lab8/predictArtifact.py, output predykcji konsola w [projekcie](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/s444417-predict-s449288/)
3. zarejestronwany model np. http://tzietkiewicz.vm.wmi.amu.edu.pl/#/experiments/17/runs/811420769d2642b8be694693c75b3587/artifactPath/linear-model, model jest rejestrowany w pliku lab8/trainScript.py
4. [projekt](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/s444417-predict-s449288-from-registry/) predykcja realizowana skryptem lab8/predictMlflow.py i printowana w consoli builda,