2. s444417-training uruchamia się automatycznie po zakończeniu joba s444417-create-dataset, plik Jenkinsfile, przy pomocy build job. Kopiuje zbiór danych przy pomocy copyArtifact w pliku Jenkinsfile3
2. evaluacja modelu metodą evaluate zawołana na modelu w pliku trainScript.py.Zapisanie wyniku do pliku trainResults.csv, w Jenkinsfile.eval archiveArtifact
3. Jenkinsfile.eval w stagu "Copy prev build artifact" kopiuje trainResults.csv a jeśli go nie ma to catch łapie error, skrypt trainScript.py też obsługuje brak takiego pliku, bo otwiera go w trybie "a+"
1. lab8/trainScript.py log_param: epoch i learning_rate i log_metric final_loss
2. lab8/MLproject
Zadanie 2
1. na końcu pliku lab8/trainScript.py, zawiera input_example, MLproject docker_env
2.
3. zarejestronwany model np. http://tzietkiewicz.vm.wmi.amu.edu.pl/#/experiments/17/runs/811420769d2642b8be694693c75b3587/artifactPath/linear-model, model rejestruje w pliku lab8/trainScript.py
4. [projekt](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/s444417-predict-s449288-from-registry/) realizuje predykcje skryptem lab8/predictMlflow.py i printuje ją w consoli builda,