ium_444417/lab8/predictMlflow.py

15 lines
437 B
Python
Raw Normal View History

2022-05-15 10:37:28 +02:00
import mlflow
import numpy as np
import json
logged_model = '/mlruns/14/80fe21a0804844088147d15a3cebb3e5/artifacts/lego-model'
# Load model as a PyFuncModel.
loaded_model = mlflow.pyfunc.load_model(logged_model)
with open(f'{loaded_model}/input_example.json') as f:
input_example_data = json.load(f)
# Predictions
print(f'input: {input_example_data}')
print(f'predictions: {loaded_model.predict(input_example_data)}')