This commit is contained in:
parent
0c5537f26d
commit
3853b0ff00
@ -3,3 +3,6 @@ venv
|
||||
.vscode
|
||||
.idea
|
||||
Participants_Data_HPP
|
||||
|
||||
my_runs
|
||||
saved_model
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -221,3 +221,6 @@ venv/*
|
||||
training_1
|
||||
|
||||
Participants_Data_HPP/
|
||||
|
||||
my_runs
|
||||
saved_model
|
@ -12,6 +12,7 @@ RUN apt-get install wget
|
||||
# RUN python3 -m pip install kaggle
|
||||
RUN python3 -m pip install pandas
|
||||
RUN pip3 install matplotlib
|
||||
RUN pip3 install sacred
|
||||
# RUN ln -s ~/.local/bin/kaggle /usr/bin/kaggle
|
||||
|
||||
WORKDIR /app
|
||||
|
@ -15,7 +15,7 @@ pipeline {
|
||||
copyArtifacts projectName: 's444417-create-dataset'
|
||||
sh 'ls -la'
|
||||
sh 'echo $EPOCH_NUMBER'
|
||||
sh 'python3 ./src/trainScript.py $EPOCH_NUMBER'
|
||||
sh 'python3 ./lab7/trainScript.py $EPOCH_NUMBER'
|
||||
}
|
||||
}
|
||||
stage('Archive') {
|
||||
|
@ -1,6 +1,11 @@
|
||||
## Projekt na przedmiot inżynieria oprogramowania
|
||||
IUM_6 opis sposobu rozwiązania zadań i podpunktów
|
||||
---
|
||||
Aktualne wyniki zadania IUM_6 dostępne są:
|
||||
- [s444417-create-dataset](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/s444417-create-dataset/): build #244
|
||||
- [s444417-training](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/s444417-training/job/master/): build #96
|
||||
- [s444417-evaluation](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/s444417-evaluation/job/master/): build #43
|
||||
|
||||
Zadanie 1
|
||||
1. stworzono job [s444417-training](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/s444417-training/)
|
||||
2. s444417-training uruchamia się automatycznie po zakończeniu joba s444417-create-dataset, plik Jenkinsfile, przy pomocy build job. Kopiuje zbiór danych przy pomocy copyArtifact w pliku Jenkinsfile3
|
||||
@ -12,8 +17,8 @@ Zadanie 2
|
||||
1. stworzono job [s444417-evaluation](https://tzietkiewicz.vm.wmi.amu.edu.pl:8080/job/s444417-evaluation/)
|
||||
2. evaluacja modelu metodą evaluate zawołana na modelu w pliku trainScript.py.Zapisanie wyniku do pliku trainResults.csv, w Jenkinsfile.eval archiveArtifact
|
||||
3. Jenkinsfile.eval w stagu "Copy prev build artifact" kopiuje trainResults.csv a jeśli go nie ma to catch łapie error, skrypt trainScript.py też obsługuje brak takiego pliku, bo otwiera go w trybie "a+"
|
||||
4. skrypt trainScript.py tworzy plota z wczytanych wartości odczytanych z pliku trainResults.csv, natomiast nei ma jak tego podejrzeć w Jenkins
|
||||
4. skrypt trainScript.py tworzy plota z wczytanych wartości odczytanych z pliku trainResults.csv i zapisuje wkres do pliku metric.py
|
||||
5. projekt odpala się po zakończeniu trenowania jenkinsfile3 build job oraz kopiuje sobie model copyArtifacts z uwzględnieniem brancha master
|
||||
6. copyArtifacts z s444417-create-dataset
|
||||
7. parametr BRANCH do wyboru konkretnej gałęzi, buildselector do wybrania builda w Jenkins.eval
|
||||
8. powiadomenie mail wysyłane w pliku Jenkinsfile.eval post emailext
|
||||
8. powiadomenie mail wraz z metryką loss wysyłane w pliku Jenkinsfile.eval post emailext
|
116
lab7/trainScript.py
Normal file
116
lab7/trainScript.py
Normal file
@ -0,0 +1,116 @@
|
||||
import os
|
||||
import sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras import layers
|
||||
|
||||
from sacred import Experiment
|
||||
from sacred.observers import FileStorageObserver
|
||||
from sacred.observers import MongoObserver
|
||||
|
||||
ex = Experiment("sacred_scopes", interactive=True)
|
||||
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
# Mongo observer
|
||||
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017', db_name='sacred'))
|
||||
|
||||
# train params
|
||||
numberOfEpochParam = 0
|
||||
|
||||
try:
|
||||
numberOfEpochParam = int(sys.argv[1])
|
||||
except:
|
||||
# dafault val
|
||||
numberOfEpochParam = 3
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
numberOfEpoch = numberOfEpochParam
|
||||
|
||||
@ex.capture
|
||||
def train(numberOfEpoch, _run):
|
||||
cwd = os.path.abspath(os.path.dirname(sys.argv[0]))
|
||||
|
||||
pathTrain = cwd + "/../Participants_Data_HPP/Train.csv"
|
||||
pathTest = cwd + "/../Participants_Data_HPP/Test.csv"
|
||||
|
||||
features = ["UNDER_CONSTRUCTION", "RERA", "BHK_NO.", "SQUARE_FT", "READY_TO_MOVE", "RESALE", "LONGITUDE", "LATITUDE", "TARGET(PRICE_IN_LACS)"]
|
||||
|
||||
# get dataset
|
||||
house_price_train = pd.read_csv(pathTrain)[features]
|
||||
|
||||
# get test dataset
|
||||
house_price_test = pd.read_csv(pathTest)[features]
|
||||
|
||||
|
||||
house_price_features = house_price_train.copy()
|
||||
# pop column
|
||||
house_price_labels = house_price_features.pop('TARGET(PRICE_IN_LACS)')
|
||||
|
||||
# process data
|
||||
normalize = layers.Normalization()
|
||||
normalize.adapt(house_price_features)
|
||||
|
||||
feature_test_sample = house_price_test.sample(10)
|
||||
labels_test_sample = feature_test_sample.pop('TARGET(PRICE_IN_LACS)')
|
||||
|
||||
house_price_test_features = house_price_test.copy()
|
||||
# pop column
|
||||
house_price_test_expected = house_price_test_features.pop('TARGET(PRICE_IN_LACS)')
|
||||
|
||||
house_price_features = np.array(house_price_features)
|
||||
|
||||
# load model if exists or create new
|
||||
modelPath = 'saved_model/MyModel_tf'
|
||||
try:
|
||||
linear_model = tf.keras.models.load_model(modelPath)
|
||||
print("open existing model")
|
||||
except Exception as exception:
|
||||
print(exception)
|
||||
linear_model = tf.keras.Sequential([
|
||||
normalize,
|
||||
layers.Dense(1)
|
||||
])
|
||||
linear_model.compile(loss = tf.losses.MeanSquaredError(),
|
||||
optimizer = tf.optimizers.Adam(1))
|
||||
print("creating new model")
|
||||
|
||||
# train model
|
||||
history = linear_model.fit(
|
||||
house_price_features,
|
||||
house_price_labels,
|
||||
epochs=int(numberOfEpoch),
|
||||
validation_split=0.33,
|
||||
verbose=1)
|
||||
|
||||
# save model
|
||||
linear_model.save(modelPath, save_format='tf')
|
||||
# save model as artifact
|
||||
ex.add_artifact(modelPath + "/saved_model.pb")
|
||||
|
||||
# finall loss
|
||||
hist = pd.DataFrame(history.history)
|
||||
hist['epoch'] = history.epoch
|
||||
_run.log_scalar('final.training.loss', hist['loss'].iloc[-1])
|
||||
|
||||
test_results = {}
|
||||
test_results['linear_model'] = linear_model.evaluate(
|
||||
house_price_test_features, house_price_test_expected, verbose=0)
|
||||
|
||||
def flatten(t):
|
||||
return [item for sublist in t for item in sublist]
|
||||
|
||||
pred = np.array(linear_model.predict(feature_test_sample))
|
||||
flatten_pred = flatten(pred)
|
||||
|
||||
with open(cwd + "/../result.txt", "w+") as resultFile:
|
||||
resultFile.write("predictions: " + str(flatten_pred) + '\n')
|
||||
resultFile.write("expected: " + str(labels_test_sample.to_numpy()))
|
||||
|
||||
@ex.main
|
||||
def main():
|
||||
train()
|
||||
|
||||
ex.run()
|
@ -1,2 +1,2 @@
|
||||
predictions: [26.87796, 42.875183, 75.51122, 184.03447, 283.11658, 132.76123, 187.1964, 54.623642, 48.12828, 120.18621]
|
||||
expected: [ 17. 85. 27. 110. 370. 57.9 870. 32.5 76. 38. ]
|
||||
predictions: [185.41609, 41.248466, -66.347305, 112.55022, 106.2057, 11.261917, 75.81361, 184.90059, -3.6325989, 85.295105]
|
||||
expected: [ 96. 51. 8. 63. 25. 11. 80. 110. 85. 41.]
|
@ -7,15 +7,6 @@ import tensorflow as tf
|
||||
from tensorflow.keras import layers
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def plot_loss(history):
|
||||
plt.plot(history.history['loss'], label='loss')
|
||||
plt.plot(history.history['val_loss'], label='val_loss')
|
||||
plt.xlabel('Epoch')
|
||||
plt.ylabel('Error [MPG]')
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
#train params
|
||||
numberOfEpoch = sys.argv[1]
|
||||
|
||||
@ -85,7 +76,6 @@ history = linear_model.fit(
|
||||
verbose=1)
|
||||
#callbacks=[cp_callback])
|
||||
|
||||
plot_loss(history)
|
||||
# save model
|
||||
linear_model.save(modelPath, save_format='tf')
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user