pipeline { agent { dockerfile { args '-v /mlruns:/mlruns' } } parameters{ string( defaultValue: '5', description: 'Epoch number', name: 'EPOCH_NUMBER' ) } stages { stage('conda') { sh 'conda env create -f environment.yml' sh 'conda activate myenv' } stage('Copy') { steps { copyArtifacts projectName: 's444417-create-dataset' sh 'ls -la' sh 'echo $EPOCH_NUMBER' sh 'python3 ./lab8/trainScript.py' } } stage('Archive') { steps { dir('saved_model') { archiveArtifacts artifacts: '**/**' } dir('my_runs') { archiveArtifacts artifacts: '**/**' } } } stage('Starting eval job') { steps { build job: 's444417-evaluation/master', wait: false } } stage('Archive mlflow') { steps { sh 'cd ./lab8' sh 'tar -czf mlruns.tar.gz mlruns/' archiveArtifacts 'mlruns.tar.gz' } } } options { copyArtifactPermission('s444417-evaluation'); } post { always { emailext body: "${currentBuild.currentResult}", subject: 's444417-testing build status', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms' } } }