1
0
ium_444417/src/task1python.py
2022-04-10 19:55:37 +02:00

69 lines
1.7 KiB
Python

import os
import sys
import pandas as pd
cwd = os.path.abspath(os.path.dirname(sys.argv[0]))
# paths
filePathTest = cwd + "/../Participants_Data_HPP/Train.csv"
filePathTrain = cwd + "/../Participants_Data_HPP/Test.csv"
dataTest = pd.read_csv(filePathTest)
dataTrain = pd.read_csv(filePathTrain)
number_lines = len(dataTest.index)
row_size = number_lines // 2
# start looping through data writing it to a new file for each set
# no of csv files with row size
k = 2
size = row_size
# split test data to test and dev
for i in range(k):
df = dataTest[size * i:size * (i + 1)]
name = ""
if i == 0:
name = "Dev"
else:
name = "Test"
df.to_csv(cwd + '/../Participants_Data_HPP/' + name + '.csv', index=False)
#df_1 = pd.read_csv("../Participants_Data_HPP/Dev.csv")
#df_2 = pd.read_csv("../Participants_Data_HPP/Test.csv")
#df_2 = pd.read_csv("../Participants_Data_HPP/Train.csv")
dataPath = cwd + '/../Participants_Data_HPP/Train.csv'
#data informations
data = pd.read_csv(dataPath)
description = data.describe(include="all")
corr = data.corr()
#select the most significant
data = data[['TARGET(PRICE_IN_LACS)', 'SQUARE_FT', 'BHK_NO.', 'RESALE']]
#normalize price column and flat area using min max technique
columnName1 = 'TARGET(PRICE_IN_LACS)'
columnName2 = 'SQUARE_FT'
column1Min = data[columnName1].min()
column1Max = data[columnName1].max()
column2Min = data[columnName2].min()
column2Max = data[columnName2].max()
data[columnName1] = (data[columnName1] - column1Min) / (column1Max - column1Min)
data[columnName2] = (data[columnName2] - column2Min) / (column2Max - column2Min)
print(description)
print(corr)
print(data.describe(include="all"))
print(data.head())