ium_444417/src/trainScript.py
2022-04-10 19:55:37 +02:00

80 lines
2.4 KiB
Python

import os
import sys
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
cwd = os.path.abspath(os.path.dirname(sys.argv[0]))
pathTrain = cwd + "/../Participants_Data_HPP/Train.csv"
pathTest = cwd + "/../Participants_Data_HPP/Test.csv"
features = ["UNDER_CONSTRUCTION", "RERA", "BHK_NO.", "SQUARE_FT", "READY_TO_MOVE", "RESALE", "LONGITUDE", "LATITUDE", "TARGET(PRICE_IN_LACS)"]
# get dataset
house_price_train = pd.read_csv(pathTrain)[features]
# get test dataset
house_price_test = pd.read_csv(pathTest)[features]
house_price_features = house_price_train.copy()
# pop column
house_price_labels = house_price_features.pop('TARGET(PRICE_IN_LACS)')
# process data
normalize = layers.Normalization()
normalize.adapt(house_price_features)
feature_test_sample = house_price_test.sample(10)
labels_test_sample = feature_test_sample.pop('TARGET(PRICE_IN_LACS)')
house_price_test_features = house_price_test.copy()
# pop column
house_price_test_expected = house_price_test_features.pop('TARGET(PRICE_IN_LACS)')
# to np.array
# house_price_test = np.array(house_price_test)
# house_price_test_expected = np.array(house_price_test_expected)
house_price_features = np.array(house_price_features)
# checkoints
checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
# Create a callback that saves the model's weights
# cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True, verbose=1)
# model keras.Sequential
# one output tensor
linear_model = tf.keras.Sequential([
normalize,
layers.Dense(1)
])
linear_model.compile(loss = tf.losses.MeanSquaredError(),
optimizer = tf.optimizers.Adam(1))
# train model
history = linear_model.fit(house_price_features, house_price_labels, epochs=10, )
#callbacks=[cp_callback])
# print(history)
test_results = {}
test_results['linear_model'] = linear_model.evaluate(
house_price_test_features, house_price_test_expected, verbose=0)
def flatten(t):
return [item for sublist in t for item in sublist]
pred = np.array(linear_model.predict(feature_test_sample))
flatten_pred = flatten(pred)
# print("predictions: " + str(flatten_pred))
# print("expected: " + str(np.array(labels_test_sample)))
with open(cwd + "/../result.txt", "w+") as resultFile:
resultFile.write("predictions: " + str(flatten_pred) + '\n')
resultFile.write("expected: " + str(labels_test_sample.to_numpy()))