2020-06-02 22:06:51 +02:00
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from nn_model import Net
|
2020-06-08 14:30:10 +02:00
|
|
|
from torch import nn, optim
|
|
|
|
from torchvision import datasets, transforms
|
2020-06-02 22:06:51 +02:00
|
|
|
|
|
|
|
n_epochs = 3
|
|
|
|
batch_size_train = 64
|
|
|
|
batch_size_test = 1000
|
|
|
|
model = Net()
|
|
|
|
print("Model loaded.")
|
|
|
|
optimizer = optim.SGD(model.parameters(), lr=0.003, momentum=0.5)
|
|
|
|
criterion = nn.NLLLoss()
|
|
|
|
|
|
|
|
transform = transforms.Compose([transforms.ToTensor(),
|
|
|
|
transforms.Normalize((0.1307,), (0.3081,)),
|
|
|
|
])
|
|
|
|
|
|
|
|
train_set = datasets.MNIST('PATH_TO_STORE_TRAIN_SET', download=True, train=True, transform=transform)
|
|
|
|
test_set = datasets.MNIST('PATH_TO_STORE_TEST_SET', download=True, train=False, transform=transform)
|
|
|
|
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size_train, shuffle=True)
|
|
|
|
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size_test, shuffle=True)
|
|
|
|
|
|
|
|
print("Data sets loaded.")
|
|
|
|
|
|
|
|
train_losses = []
|
|
|
|
train_counter = []
|
|
|
|
test_losses = []
|
|
|
|
test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]
|
|
|
|
|
|
|
|
|
|
|
|
def train_model(epoch):
|
|
|
|
print("Training model.")
|
|
|
|
model.train()
|
|
|
|
for batch_idx, (data, target) in enumerate(train_loader):
|
|
|
|
optimizer.zero_grad()
|
|
|
|
output = model(data)
|
|
|
|
loss = criterion(output, target)
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
if batch_idx % 10 == 0:
|
|
|
|
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
|
|
|
epoch, batch_idx * len(data), len(train_loader.dataset),
|
|
|
|
100. * batch_idx / len(train_loader), loss.item()))
|
|
|
|
train_losses.append(loss.item())
|
|
|
|
train_counter.append(
|
|
|
|
(batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
|
|
|
|
|
|
|
|
|
|
|
|
def test_model():
|
|
|
|
print("Testing model.")
|
|
|
|
model.eval()
|
|
|
|
test_loss = 0
|
|
|
|
correct = 0
|
|
|
|
with torch.no_grad():
|
|
|
|
for data, target in test_loader:
|
|
|
|
output = model(data)
|
|
|
|
test_loss += F.nll_loss(output, target, size_average=False).item()
|
|
|
|
pred = output.data.max(1, keepdim=True)[1]
|
|
|
|
correct += pred.eq(target.data.view_as(pred)).sum()
|
|
|
|
test_loss /= len(test_loader.dataset)
|
|
|
|
test_losses.append(test_loss)
|
|
|
|
print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
|
|
|
|
test_loss, correct, len(test_loader.dataset),
|
|
|
|
100. * correct / len(test_loader.dataset)))
|
|
|
|
|
|
|
|
|
|
|
|
def create_model():
|
|
|
|
test_model()
|
|
|
|
for epoch in range(1, n_epochs + 1):
|
|
|
|
train_model(epoch)
|
|
|
|
test_model()
|
|
|
|
|
|
|
|
torch.save(model.state_dict(), './model.pt')
|
|
|
|
|
|
|
|
|
|
|
|
create_model()
|