540 lines
18 KiB
Python
540 lines
18 KiB
Python
|
'''Pygame Drawing algorithms written in Python. (Work in Progress)
|
||
|
|
||
|
Implement Pygame's Drawing Algorithms in a Python version for testing
|
||
|
and debugging.
|
||
|
'''
|
||
|
from __future__ import division
|
||
|
import sys
|
||
|
|
||
|
if sys.version_info >= (3, 0, 0):
|
||
|
from math import floor, ceil
|
||
|
else:
|
||
|
# Python2.7
|
||
|
# FIXME : the import of the builtin math module is broken ...
|
||
|
def floor(x):
|
||
|
int_x = int(x)
|
||
|
return int_x if (x == int_x or x > 0) else int_x - 1
|
||
|
|
||
|
def ceil(x):
|
||
|
int_x = int(x)
|
||
|
return int_x if (int_x == x or x < 0) else int_x + 1
|
||
|
|
||
|
|
||
|
# H E L P E R F U N C T I O N S #
|
||
|
|
||
|
# fractional part of x
|
||
|
|
||
|
def frac(x):
|
||
|
'''return fractional part of x'''
|
||
|
return x - floor(x)
|
||
|
|
||
|
def inv_frac(x):
|
||
|
'''return inverse fractional part of x'''
|
||
|
return 1 - (x - floor(x)) # eg, 1 - frac(x)
|
||
|
|
||
|
|
||
|
# L O W L E V E L D R A W F U N C T I O N S #
|
||
|
# (They are too low-level to be translated into python, right?)
|
||
|
|
||
|
def set_at(surf, x, y, color):
|
||
|
surf.set_at((x, y), color)
|
||
|
|
||
|
|
||
|
def draw_pixel(surf, x, y, color, bright, blend=True):
|
||
|
'''draw one blended pixel with given brightness.'''
|
||
|
try:
|
||
|
other_col = surf.get_at((x, y)) if blend else (0, 0, 0, 0)
|
||
|
except IndexError: # pixel outside the surface
|
||
|
return
|
||
|
new_color = tuple((bright * col + (1 - bright) * pix)
|
||
|
for col, pix in zip(color, other_col))
|
||
|
# FIXME what should happen if only one, color or surf_col, has alpha?
|
||
|
surf.set_at((x, y), new_color)
|
||
|
|
||
|
|
||
|
def _drawhorzline(surf, color, x_from, y, x_to):
|
||
|
if x_from == x_to:
|
||
|
surf.set_at((x_from, y), color)
|
||
|
return
|
||
|
|
||
|
start, end = (x_from, x_to) if x_from <= x_to else (x_to, x_from)
|
||
|
for x in range(start, end + 1):
|
||
|
surf.set_at((x, y), color)
|
||
|
|
||
|
|
||
|
def _drawvertline(surf, color, x, y_from, y_to):
|
||
|
if y_from == y_to:
|
||
|
surf.set_at((x, y_from), color)
|
||
|
return
|
||
|
|
||
|
start, end = (y_from, y_to) if y_from <= y_to else (y_to, y_from)
|
||
|
for y in range(start, end + 1):
|
||
|
surf.set_at((x, y), color)
|
||
|
|
||
|
|
||
|
# I N T E R N A L D R A W L I N E F U N C T I O N S #
|
||
|
|
||
|
def _clip_and_draw_horzline(surf, color, x_from, y, x_to):
|
||
|
'''draw clipped horizontal line.'''
|
||
|
# check Y inside surf
|
||
|
clip = surf.get_clip()
|
||
|
if y < clip.y or y >= clip.y + clip.h:
|
||
|
return
|
||
|
|
||
|
x_from = max(x_from, clip.x)
|
||
|
x_to = min(x_to, clip.x + clip.w - 1)
|
||
|
|
||
|
# check any x inside surf
|
||
|
if x_to < clip.x or x_from >= clip.x + clip.w:
|
||
|
return
|
||
|
|
||
|
_drawhorzline(surf, color, x_from, y, x_to)
|
||
|
|
||
|
|
||
|
def _clip_and_draw_vertline(surf, color, x, y_from, y_to):
|
||
|
'''draw clipped vertical line.'''
|
||
|
# check X inside surf
|
||
|
clip = surf.get_clip()
|
||
|
|
||
|
if x < clip.x or x >= clip.x + clip.w:
|
||
|
return
|
||
|
|
||
|
y_from = max(y_from, clip.y)
|
||
|
y_to = min(y_to, clip.y + clip.h - 1)
|
||
|
|
||
|
# check any y inside surf
|
||
|
if y_to < clip.y or y_from >= clip.y + clip.h:
|
||
|
return
|
||
|
|
||
|
_drawvertline(surf, color, x, y_from, y_to)
|
||
|
|
||
|
# These constans xxx_EDGE are "outside-the-bounding-box"-flags
|
||
|
LEFT_EDGE = 0x1
|
||
|
RIGHT_EDGE = 0x2
|
||
|
BOTTOM_EDGE = 0x4
|
||
|
TOP_EDGE = 0x8
|
||
|
|
||
|
def encode(x, y, left, top, right, bottom):
|
||
|
'''returns a code that defines position with respect to a bounding box'''
|
||
|
# we use the fact that python interprets booleans (the inqualities)
|
||
|
# as 0/1, and then multiply them with the xxx_EDGE flags
|
||
|
return ((x < left) * LEFT_EDGE +
|
||
|
(x > right) * RIGHT_EDGE +
|
||
|
(y < top) * TOP_EDGE +
|
||
|
(y > bottom) * BOTTOM_EDGE)
|
||
|
|
||
|
|
||
|
INSIDE = lambda a: not a
|
||
|
ACCEPT = lambda a, b: not (a or b)
|
||
|
REJECT = lambda a, b: a and b
|
||
|
|
||
|
|
||
|
def clip_line(line, left, top, right, bottom, use_float=False):
|
||
|
'''Algorithm to calculate the clipped line.
|
||
|
|
||
|
We calculate the coordinates of the part of the line segment within the
|
||
|
bounding box (defined by left, top, right, bottom). The we write
|
||
|
the coordinates of the line segment into "line", much like the C-algorithm.
|
||
|
With `use_float` True, clip_line is usable for float-clipping.
|
||
|
|
||
|
Returns: true if the line segment cuts the bounding box (false otherwise)
|
||
|
'''
|
||
|
assert isinstance(line, list)
|
||
|
x1, y1, x2, y2 = line
|
||
|
dtype = float if use_float else int
|
||
|
|
||
|
while True:
|
||
|
# the coordinates are progressively modified with the codes,
|
||
|
# until they are either rejected or correspond to the final result.
|
||
|
code1 = encode(x1, y1, left, top, right, bottom)
|
||
|
code2 = encode(x2, y2, left, top, right, bottom)
|
||
|
|
||
|
if ACCEPT(code1, code2):
|
||
|
# write coordinates into "line" !
|
||
|
line[:] = x1, y1, x2, y2
|
||
|
return True
|
||
|
if REJECT(code1, code2):
|
||
|
return False
|
||
|
|
||
|
# We operate on the (x1, y1) point, and swap if it is inside the bbox:
|
||
|
if INSIDE(code1):
|
||
|
x1, x2 = x2, x1
|
||
|
y1, y2 = y2, y1
|
||
|
code1, code2 = code2, code1
|
||
|
if (x2 != x1):
|
||
|
m = (y2 - y1) / float(x2 - x1)
|
||
|
else:
|
||
|
m = 1.0
|
||
|
# Each case, if true, means that we are outside the border:
|
||
|
# calculate x1 and y1 to be the "first point" inside the bbox...
|
||
|
if code1 & LEFT_EDGE:
|
||
|
y1 += dtype((left - x1) * m)
|
||
|
x1 = left
|
||
|
elif code1 & RIGHT_EDGE:
|
||
|
y1 += dtype((right - x1) * m)
|
||
|
x1 = right
|
||
|
elif code1 & BOTTOM_EDGE:
|
||
|
if x2 != x1:
|
||
|
x1 += dtype((bottom - y1) / m)
|
||
|
y1 = bottom
|
||
|
elif code1 & TOP_EDGE:
|
||
|
if x2 != x1:
|
||
|
x1 += dtype((top - y1) / m)
|
||
|
y1 = top
|
||
|
|
||
|
|
||
|
def _draw_line(surf, color, x1, y1, x2, y2):
|
||
|
'''draw a non-horizontal line (without anti-aliasing).'''
|
||
|
# Variant of https://en.wikipedia.org/wiki/Bresenham's_line_algorithm
|
||
|
#
|
||
|
# This strongly differs from craw.c implementation, because we use a
|
||
|
# "slope" variable (instead of delta_x and delta_y) and a "error" variable.
|
||
|
# And we can not do pointer-arithmetic with "BytesPerPixel", like in
|
||
|
# the C-algorithm.
|
||
|
if x1 == x2:
|
||
|
# This case should not happen...
|
||
|
raise ValueError
|
||
|
|
||
|
slope = abs((y2 - y1) / (x2 - x1))
|
||
|
error = 0.0
|
||
|
|
||
|
if slope < 1:
|
||
|
# Here, it's a rather horizontal line
|
||
|
|
||
|
# 1. check in which octants we are & set init values
|
||
|
if x2 < x1:
|
||
|
x1, x2 = x2, x1
|
||
|
y1, y2 = y2, y1
|
||
|
y = y1
|
||
|
dy_sign = 1 if (y1 < y2) else -1
|
||
|
|
||
|
# 2. step along x coordinate
|
||
|
for x in range(x1, x2 + 1):
|
||
|
set_at(surf, x, y, color)
|
||
|
error += slope
|
||
|
if error >= 0.5:
|
||
|
y += dy_sign
|
||
|
error -= 1
|
||
|
else:
|
||
|
# Case of a rather vertical line
|
||
|
|
||
|
# 1. check in which octants we are & set init values
|
||
|
if y1 > y2:
|
||
|
x1, x2 = x2, x1
|
||
|
y1, y2 = y2, y1
|
||
|
x = x1
|
||
|
slope = 1 / slope
|
||
|
dx_sign = 1 if (x1 < x2) else -1
|
||
|
|
||
|
# 2. step along y coordinate
|
||
|
for y in range(y1, y2 + 1):
|
||
|
set_at(surf, x, y, color)
|
||
|
error += slope
|
||
|
if error >= 0.5:
|
||
|
x += dx_sign
|
||
|
error -= 1
|
||
|
|
||
|
|
||
|
def _draw_aaline(surf, color, from_x, from_y, to_x, to_y, blend):
|
||
|
'''draw an anti-aliased line.
|
||
|
|
||
|
The algorithm yields identical results with _draw_line for horizontal,
|
||
|
vertical or diagonal lines, and results changes smoothly when changing
|
||
|
any of the endpoint coordinates.
|
||
|
|
||
|
Note that this yields strange results for very short lines, eg
|
||
|
a line from (0, 0) to (0, 1) will draw 2 pixels, and a line from
|
||
|
(0, 0) to (0, 1.1) will blend 10 % on the pixel (0, 2).
|
||
|
'''
|
||
|
# The different requirements that we have on an antialiasing algorithm
|
||
|
# implies to make some compromises:
|
||
|
# 1. We want smooth evolution wrt to the 4 endpoint coordinates
|
||
|
# (this means also that we want a smooth evolution when the angle
|
||
|
# passes +/- 45°
|
||
|
# 2. We want the same behavior when swapping the endpoints
|
||
|
# 3. We want understandable results for the endpoint values
|
||
|
# (eg we want to avoid half-integer values to draw a simple plain
|
||
|
# horizontal or vertical line between two integer l endpoints)
|
||
|
#
|
||
|
# This implies to somehow make the line artificially 1 pixel longer
|
||
|
# and to draw a full pixel when we have the endpoints are identical.
|
||
|
dx = to_x - from_x
|
||
|
dy = to_y - from_y
|
||
|
|
||
|
if dx == 0 and dy == 0:
|
||
|
# For smoothness reasons, we could also do some blending here,
|
||
|
# but it seems overshoot...
|
||
|
set_at(surf, int(from_x), int(from_y), color)
|
||
|
return
|
||
|
|
||
|
if abs(dx) >= abs(dy):
|
||
|
if from_x > to_x:
|
||
|
from_x, to_x = to_x, from_x
|
||
|
from_y, to_y = to_y, from_y
|
||
|
dx = -dx
|
||
|
dy = -dy
|
||
|
|
||
|
slope = dy / dx
|
||
|
def draw_two_pixel(x, float_y, factor):
|
||
|
y = floor(float_y)
|
||
|
draw_pixel(surf, x, y, color, factor * inv_frac(float_y), blend)
|
||
|
draw_pixel(surf, x, y + 1, color, factor * frac(float_y), blend)
|
||
|
|
||
|
# A and G are respectively left and right to the "from" point, but
|
||
|
# with integer-x-coordinate, (and only if from_x is not integer).
|
||
|
# Hence they appear in following order on the line in general case:
|
||
|
# A from-pt G . . . to-pt S
|
||
|
# |------*-------|--- . . . ---|-----*------|-
|
||
|
G_x = ceil(from_x)
|
||
|
G_y = from_y + (G_x - from_x) * slope
|
||
|
|
||
|
# 1. Draw start of the segment if we have a non-integer-part
|
||
|
if from_x < G_x:
|
||
|
# this corresponds to the point "A"
|
||
|
draw_two_pixel(floor(from_x), G_y - slope, inv_frac(from_x))
|
||
|
|
||
|
# 2. Draw end of the segment: we add one pixel for homogenity reasons
|
||
|
rest = frac(to_x)
|
||
|
S_x = ceil(to_x)
|
||
|
if rest > 0:
|
||
|
# Again we draw only if we have a non-integer-part
|
||
|
S_y = from_y + slope * (dx + 1 - rest)
|
||
|
draw_two_pixel(S_x, S_y, rest)
|
||
|
else:
|
||
|
S_x += 1
|
||
|
|
||
|
# 3. loop for other points
|
||
|
for x in range(G_x, S_x):
|
||
|
y = G_y + slope * (x - G_x)
|
||
|
draw_two_pixel(x, y, 1)
|
||
|
|
||
|
else:
|
||
|
if from_y > to_y:
|
||
|
from_x, to_x = to_x, from_x
|
||
|
from_y, to_y = to_y, from_y
|
||
|
dx = -dx
|
||
|
dy = -dy
|
||
|
|
||
|
slope = dx / dy
|
||
|
|
||
|
def draw_two_pixel(float_x, y, factor):
|
||
|
x = floor(float_x)
|
||
|
draw_pixel(surf, x, y, color, factor * inv_frac(float_x), blend)
|
||
|
draw_pixel(surf, x + 1, y, color, factor * frac(float_x), blend)
|
||
|
|
||
|
G_y = ceil(from_y)
|
||
|
G_x = from_x + (G_y - from_y) * slope
|
||
|
|
||
|
# 1. Draw start of the segment
|
||
|
if from_y < G_y:
|
||
|
draw_two_pixel(G_x - slope, floor(from_y), inv_frac(from_y))
|
||
|
|
||
|
# 2. Draw end of the segment
|
||
|
rest = frac(to_y)
|
||
|
S_y = ceil(to_y)
|
||
|
if rest > 0:
|
||
|
S_x = from_x + slope * (dy + 1 - rest)
|
||
|
draw_two_pixel(S_x, S_y, rest)
|
||
|
else:
|
||
|
S_y += 1
|
||
|
|
||
|
# 3. loop for other points
|
||
|
for y in range(G_y, S_y):
|
||
|
x = G_x + slope * (y - G_y)
|
||
|
draw_two_pixel(x, y, 1)
|
||
|
|
||
|
|
||
|
# C L I P A N D D R A W L I N E F U N C T I O N S #
|
||
|
|
||
|
def _clip_and_draw_line(surf, rect, color, pts):
|
||
|
'''clip the line into the rectangle and draw if needed.
|
||
|
|
||
|
Returns true if anything has been drawn, else false.'''
|
||
|
# "pts" is a list with the four coordinates of the two endpoints
|
||
|
# of the line to be drawn : pts = x1, y1, x2, y2.
|
||
|
# The data format is like that to stay closer to the C-algorithm.
|
||
|
if not clip_line(pts, rect.x, rect.y, rect.x + rect.w - 1,
|
||
|
rect.y + rect.h - 1):
|
||
|
# The line segment defined by "pts" is not crossing the rectangle
|
||
|
return 0
|
||
|
if pts[1] == pts[3]: # eg y1 == y2
|
||
|
_drawhorzline(surf, color, pts[0], pts[1], pts[2])
|
||
|
elif pts[0] == pts[2]: # eg x1 == x2
|
||
|
_drawvertline(surf, color, pts[0], pts[1], pts[3])
|
||
|
else:
|
||
|
_draw_line(surf, color, pts[0], pts[1], pts[2], pts[3])
|
||
|
return 1
|
||
|
|
||
|
def _clip_and_draw_line_width(surf, rect, color, line, width):
|
||
|
yinc = xinc = 0
|
||
|
if abs(line[0] - line[2]) > abs(line[1] - line[3]):
|
||
|
yinc = 1
|
||
|
else:
|
||
|
xinc = 1
|
||
|
newpts = line[:]
|
||
|
if _clip_and_draw_line(surf, rect, color, newpts):
|
||
|
anydrawn = 1
|
||
|
frame = newpts[:]
|
||
|
else:
|
||
|
anydrawn = 0
|
||
|
frame = [10000, 10000, -10000, -10000]
|
||
|
|
||
|
for loop in range(1, width // 2 + 1):
|
||
|
newpts[0] = line[0] + xinc * loop
|
||
|
newpts[1] = line[1] + yinc * loop
|
||
|
newpts[2] = line[2] + xinc * loop
|
||
|
newpts[3] = line[3] + yinc * loop
|
||
|
if _clip_and_draw_line(surf, rect, color, newpts):
|
||
|
anydrawn = 1
|
||
|
frame[0] = min(newpts[0], frame[0])
|
||
|
frame[1] = min(newpts[1], frame[1])
|
||
|
frame[2] = max(newpts[2], frame[2])
|
||
|
frame[3] = max(newpts[3], frame[3])
|
||
|
|
||
|
if loop * 2 < width:
|
||
|
newpts[0] = line[0] - xinc * loop
|
||
|
newpts[1] = line[1] - yinc * loop
|
||
|
newpts[2] = line[2] - xinc * loop
|
||
|
newpts[3] = line[3] - yinc * loop
|
||
|
if _clip_and_draw_line(surf, rect, color, newpts):
|
||
|
anydrawn = 1
|
||
|
frame[0] = min(newpts[0], frame[0])
|
||
|
frame[1] = min(newpts[1], frame[1])
|
||
|
frame[2] = max(newpts[2], frame[2])
|
||
|
frame[3] = max(newpts[3], frame[3])
|
||
|
|
||
|
return anydrawn
|
||
|
|
||
|
|
||
|
def _clip_and_draw_aaline(surf, rect, color, line, blend):
|
||
|
'''draw anti-aliased line between two endpoints.'''
|
||
|
if not clip_line(line, rect.x - 1, rect.y -1, rect.x + rect.w,
|
||
|
rect.y + rect.h, use_float=True):
|
||
|
return # TODO Rect(rect.x, rect.y, 0, 0)
|
||
|
_draw_aaline(surf, color, line[0], line[1], line[2], line[3], blend)
|
||
|
return # TODO Rect(-- affected area --)
|
||
|
|
||
|
|
||
|
# D R A W L I N E F U N C T I O N S #
|
||
|
|
||
|
def draw_aaline(surf, color, from_point, to_point, blend=True):
|
||
|
'''draw anti-aliased line between two endpoints.'''
|
||
|
line = [from_point[0], from_point[1], to_point[0], to_point[1]]
|
||
|
return _clip_and_draw_aaline(surf, surf.get_clip(), color, line, blend)
|
||
|
|
||
|
|
||
|
def draw_line(surf, color, from_point, to_point, width=1):
|
||
|
'''draw anti-aliased line between two endpoints.'''
|
||
|
line = [from_point[0], from_point[1], to_point[0], to_point[1]]
|
||
|
return _clip_and_draw_line_width(surf, surf.get_clip(), color, line, width)
|
||
|
|
||
|
|
||
|
# M U L T I L I N E F U N C T I O N S #
|
||
|
|
||
|
def _multi_lines(surf, color, closed, points, width=1, blend=False, aaline=False):
|
||
|
'''draw several lines, either anti-aliased or not.'''
|
||
|
# The code for anti-aliased or not is almost identical, so it's factorized
|
||
|
length = len(points)
|
||
|
if length <= 2:
|
||
|
raise TypeError
|
||
|
line = [0] * 4 # store x1, y1 & x2, y2 of the lines to be drawn
|
||
|
|
||
|
xlist = [pt[0] for pt in points]
|
||
|
ylist = [pt[1] for pt in points]
|
||
|
left = right = line[0] = xlist[0]
|
||
|
top = bottom = line[1] = ylist[0]
|
||
|
|
||
|
for x, y in points[1:]:
|
||
|
left = min(left, x)
|
||
|
right = max(right, x)
|
||
|
top = min(top, y)
|
||
|
bottom = max(right, x)
|
||
|
|
||
|
rect = surf.get_clip()
|
||
|
for loop in range(1, length):
|
||
|
|
||
|
line[0] = xlist[loop - 1]
|
||
|
line[1] = ylist[loop - 1]
|
||
|
line[2] = xlist[loop]
|
||
|
line[3] = ylist[loop]
|
||
|
if aaline:
|
||
|
_clip_and_draw_aaline(surf, rect, color, line, blend)
|
||
|
else:
|
||
|
_clip_and_draw_line_width(surf, rect, color, line, width)
|
||
|
|
||
|
if closed:
|
||
|
line[0] = xlist[length - 1]
|
||
|
line[1] = ylist[length - 1]
|
||
|
line[2] = xlist[0]
|
||
|
line[3] = ylist[0]
|
||
|
if aaline:
|
||
|
_clip_and_draw_aaline(surf, rect, color, line, blend)
|
||
|
else:
|
||
|
_clip_and_draw_line_width(surf, rect, color, line, width)
|
||
|
|
||
|
return # TODO Rect(...)
|
||
|
|
||
|
def draw_lines(surf, color, closed, points, width=1):
|
||
|
'''draw several lines connected through the points.'''
|
||
|
return _multi_lines(surf, color, closed, points, width, aaline=False)
|
||
|
|
||
|
|
||
|
def draw_aalines(surf, color, closed, points, blend=True):
|
||
|
'''draw several anti-aliased lines connected through the points.'''
|
||
|
return _multi_lines(surf, color, closed, points, blend=blend, aaline=True)
|
||
|
|
||
|
|
||
|
def draw_polygon(surface, color, points, width):
|
||
|
if width:
|
||
|
draw_lines(surface, color, 1, points, width)
|
||
|
return # TODO Rect(...)
|
||
|
num_points = len(points)
|
||
|
point_x = [x for x, y in points]
|
||
|
point_y = [y for x, y in points]
|
||
|
|
||
|
miny = min(point_y)
|
||
|
maxy = max(point_y)
|
||
|
|
||
|
if miny == maxy:
|
||
|
minx = min(point_x)
|
||
|
maxx = max(point_x)
|
||
|
_clip_and_draw_horzline(surface, color, minx, miny, maxx)
|
||
|
return # TODO Rect(...)
|
||
|
|
||
|
for y in range(miny, maxy + 1):
|
||
|
x_intersect = []
|
||
|
for i in range(num_points):
|
||
|
i_prev = i - 1 if i else num_points - 1
|
||
|
|
||
|
y1 = point_y[i_prev]
|
||
|
y2 = point_y[i]
|
||
|
|
||
|
if y1 < y2:
|
||
|
x1 = point_x[i_prev]
|
||
|
x2 = point_x[i]
|
||
|
elif y1 > y2:
|
||
|
y2 = point_y[i_prev]
|
||
|
y1 = point_y[i]
|
||
|
x2 = point_x[i_prev]
|
||
|
x1 = point_x[i]
|
||
|
else: # special case handled below
|
||
|
continue
|
||
|
|
||
|
if ( ((y >= y1) and (y < y2)) or ((y == maxy) and (y <= y2))) :
|
||
|
x_sect = (y - y1) * (x2 - x1) // (y2 - y1) + x1
|
||
|
x_intersect.append(x_sect)
|
||
|
|
||
|
x_intersect.sort()
|
||
|
for i in range(0, len(x_intersect), 2):
|
||
|
_clip_and_draw_horzline(surface, color, x_intersect[i], y,
|
||
|
x_intersect[i + 1])
|
||
|
|
||
|
# special case : horizontal border lines
|
||
|
for i in range(num_points):
|
||
|
i_prev = i - 1 if i else num_points - 1
|
||
|
y = point_y[i]
|
||
|
if miny < y == point_y[i_prev] < maxy:
|
||
|
_clip_and_draw_horzline(surface, color, point_x[i], y, point_x[i_prev])
|
||
|
|
||
|
return # TODO Rect(...)
|