recognizer.py is returnig list od codess
This commit is contained in:
parent
d8b857bb0c
commit
3ed283eeaf
@ -4,51 +4,53 @@ from nn_model import Net
|
||||
from torchvision.transforms import transforms
|
||||
|
||||
|
||||
def recognizer(a_path):
|
||||
def recognizer(paths):
|
||||
|
||||
codes = []
|
||||
code = []
|
||||
path = a_path
|
||||
|
||||
transform = transforms.Compose([transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (0.5,)),
|
||||
])
|
||||
|
||||
img = cv2.imread(path)
|
||||
|
||||
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0)
|
||||
|
||||
ret, im_th = cv2.threshold(img_gray, 90, 255, cv2.THRESH_BINARY_INV)
|
||||
|
||||
ctrs, hier = cv2.findContours(im_th.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
rects = [cv2.boundingRect(ctr) for ctr in ctrs]
|
||||
|
||||
# load nn model
|
||||
model = Net()
|
||||
model.load_state_dict(torch.load('model.pt'))
|
||||
model.eval()
|
||||
|
||||
for rect in rects:
|
||||
# Crop image
|
||||
crop_img = img[rect[1]:rect[1] + rect[3] + 10, rect[0]:rect[0] + rect[2] + 10, 0]
|
||||
# Resize the image
|
||||
roi = cv2.resize(crop_img, (28, 28), interpolation=cv2.INTER_CUBIC)
|
||||
# roi = cv2.dilate(roi, (3, 3))
|
||||
# plt.imshow(roi)
|
||||
# plt.show()
|
||||
im = transform(roi)
|
||||
im = im.view(1, 1, 28, 28)
|
||||
with torch.no_grad():
|
||||
logps = model(im)
|
||||
ps = torch.exp(logps)
|
||||
probab = list(ps.numpy()[0])
|
||||
code.append(probab.index(max(probab)))
|
||||
|
||||
print(code)
|
||||
# cv2.imshow("Code", img)
|
||||
# cv2.waitKey()
|
||||
return code
|
||||
for path in paths:
|
||||
img = cv2.imread(path)
|
||||
|
||||
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0)
|
||||
|
||||
ret, im_th = cv2.threshold(img_gray, 90, 255, cv2.THRESH_BINARY_INV)
|
||||
|
||||
ctrs, hier = cv2.findContours(im_th.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
rects = [cv2.boundingRect(ctr) for ctr in ctrs]
|
||||
|
||||
for rect in rects:
|
||||
# Crop image
|
||||
crop_img = img[rect[1]:rect[1] + rect[3] + 10, rect[0]:rect[0] + rect[2] + 10, 0]
|
||||
# Resize the image
|
||||
roi = cv2.resize(crop_img, (28, 28), interpolation=cv2.INTER_CUBIC)
|
||||
# roi = cv2.dilate(roi, (3, 3))
|
||||
# plt.imshow(roi)
|
||||
# plt.show()
|
||||
im = transform(roi)
|
||||
im = im.view(1, 1, 28, 28)
|
||||
with torch.no_grad():
|
||||
logps = model(im)
|
||||
ps = torch.exp(logps)
|
||||
probab = list(ps.numpy()[0])
|
||||
code.append(probab.index(max(probab)))
|
||||
|
||||
codes.append(code)
|
||||
# cv2.imshow("Code", img)
|
||||
# cv2.waitKey()
|
||||
|
||||
return codes
|
||||
|
||||
|
||||
recognizer("55555.jpg")
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user