detecting digits
This commit is contained in:
parent
38d24273c5
commit
a12cde0aa7
@ -19,12 +19,17 @@
|
|||||||
<select />
|
<select />
|
||||||
</component>
|
</component>
|
||||||
<component name="ChangeListManager">
|
<component name="ChangeListManager">
|
||||||
<list default="true" id="828778c9-9d97-422f-a727-18ddbd059b85" name="Default Changelist" comment="going to pytorch on conda eve">
|
<list default="true" id="828778c9-9d97-422f-a727-18ddbd059b85" name="Default Changelist" comment="add coder.py">
|
||||||
<change afterPath="$PROJECT_DIR$/coder/coder.py" afterDir="false" />
|
<change afterPath="$PROJECT_DIR$/coder/12345.png" afterDir="false" />
|
||||||
<change afterPath="$PROJECT_DIR$/coder/digit_reco_model.pt" afterDir="false" />
|
<change afterPath="$PROJECT_DIR$/coder/ll.png" afterDir="false" />
|
||||||
|
<change afterPath="$PROJECT_DIR$/coder/testno.png" afterDir="false" />
|
||||||
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/coder/coder.py" beforeDir="false" afterPath="$PROJECT_DIR$/coder/coder.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/coder/digit_reco_model.pt" beforeDir="false" afterPath="$PROJECT_DIR$/coder/digit_reco_model.pt" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/coder/digit_reco_model2.pt" beforeDir="false" afterPath="$PROJECT_DIR$/coder/digit_reco_model2.pt" afterDir="false" />
|
||||||
<change beforePath="$PROJECT_DIR$/coder/digits_recognizer.py" beforeDir="false" afterPath="$PROJECT_DIR$/coder/digits_recognizer.py" afterDir="false" />
|
<change beforePath="$PROJECT_DIR$/coder/digits_recognizer.py" beforeDir="false" afterPath="$PROJECT_DIR$/coder/digits_recognizer.py" afterDir="false" />
|
||||||
<change beforePath="$PROJECT_DIR$/coder/gr_test.png" beforeDir="false" />
|
<change beforePath="$PROJECT_DIR$/coder/image.py" beforeDir="false" afterPath="$PROJECT_DIR$/coder/image.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/coder/rocognizer.py" beforeDir="false" afterPath="$PROJECT_DIR$/coder/rocognizer.py" afterDir="false" />
|
||||||
</list>
|
</list>
|
||||||
<option name="SHOW_DIALOG" value="false" />
|
<option name="SHOW_DIALOG" value="false" />
|
||||||
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
||||||
@ -73,17 +78,17 @@
|
|||||||
<property name="RunOnceActivity.ShowReadmeOnStart" value="true" />
|
<property name="RunOnceActivity.ShowReadmeOnStart" value="true" />
|
||||||
<property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
|
<property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
|
||||||
<property name="WebServerToolWindowFactoryState" value="false" />
|
<property name="WebServerToolWindowFactoryState" value="false" />
|
||||||
<property name="last_opened_file_path" value="$PROJECT_DIR$/coder/dataset" />
|
<property name="last_opened_file_path" value="$PROJECT_DIR$/coder" />
|
||||||
<property name="restartRequiresConfirmation" value="false" />
|
<property name="restartRequiresConfirmation" value="false" />
|
||||||
<property name="settings.editor.selected.configurable" value="com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable" />
|
<property name="settings.editor.selected.configurable" value="com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable" />
|
||||||
</component>
|
</component>
|
||||||
<component name="RecentsManager">
|
<component name="RecentsManager">
|
||||||
<key name="CopyFile.RECENT_KEYS">
|
<key name="CopyFile.RECENT_KEYS">
|
||||||
<recent name="C:\Users\Pawel Lukaszewicz\PycharmProjects\AL-2020\coder\dataset" />
|
|
||||||
<recent name="C:\Users\Pawel Lukaszewicz\PycharmProjects\AL-2020\coder" />
|
<recent name="C:\Users\Pawel Lukaszewicz\PycharmProjects\AL-2020\coder" />
|
||||||
|
<recent name="C:\Users\Pawel Lukaszewicz\PycharmProjects\AL-2020\coder\dataset" />
|
||||||
</key>
|
</key>
|
||||||
</component>
|
</component>
|
||||||
<component name="RunManager" selected="Python.digits_recognizer">
|
<component name="RunManager" selected="Python.rocognizer">
|
||||||
<configuration default="true" type="PythonConfigurationType" factoryName="Python">
|
<configuration default="true" type="PythonConfigurationType" factoryName="Python">
|
||||||
<module name="wozek" />
|
<module name="wozek" />
|
||||||
<option name="INTERPRETER_OPTIONS" value="" />
|
<option name="INTERPRETER_OPTIONS" value="" />
|
||||||
@ -110,6 +115,9 @@
|
|||||||
<module name="wozek" />
|
<module name="wozek" />
|
||||||
<option name="INTERPRETER_OPTIONS" value="" />
|
<option name="INTERPRETER_OPTIONS" value="" />
|
||||||
<option name="PARENT_ENVS" value="true" />
|
<option name="PARENT_ENVS" value="true" />
|
||||||
|
<envs>
|
||||||
|
<env name="PYTHONUNBUFFERED" value="1" />
|
||||||
|
</envs>
|
||||||
<option name="SDK_HOME" value="" />
|
<option name="SDK_HOME" value="" />
|
||||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/coder" />
|
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/coder" />
|
||||||
<option name="IS_MODULE_SDK" value="true" />
|
<option name="IS_MODULE_SDK" value="true" />
|
||||||
@ -129,6 +137,9 @@
|
|||||||
<module name="wozek" />
|
<module name="wozek" />
|
||||||
<option name="INTERPRETER_OPTIONS" value="" />
|
<option name="INTERPRETER_OPTIONS" value="" />
|
||||||
<option name="PARENT_ENVS" value="true" />
|
<option name="PARENT_ENVS" value="true" />
|
||||||
|
<envs>
|
||||||
|
<env name="PYTHONUNBUFFERED" value="1" />
|
||||||
|
</envs>
|
||||||
<option name="SDK_HOME" value="" />
|
<option name="SDK_HOME" value="" />
|
||||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/coder" />
|
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/coder" />
|
||||||
<option name="IS_MODULE_SDK" value="true" />
|
<option name="IS_MODULE_SDK" value="true" />
|
||||||
@ -185,7 +196,7 @@
|
|||||||
<option name="INPUT_FILE" value="" />
|
<option name="INPUT_FILE" value="" />
|
||||||
<method v="2" />
|
<method v="2" />
|
||||||
</configuration>
|
</configuration>
|
||||||
<configuration name="train_nn" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
<configuration name="z8" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
||||||
<module name="wozek" />
|
<module name="wozek" />
|
||||||
<option name="INTERPRETER_OPTIONS" value="" />
|
<option name="INTERPRETER_OPTIONS" value="" />
|
||||||
<option name="PARENT_ENVS" value="true" />
|
<option name="PARENT_ENVS" value="true" />
|
||||||
@ -198,7 +209,7 @@
|
|||||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||||
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
||||||
<option name="SCRIPT_NAME" value="C:\Users\Pawel Lukaszewicz\PycharmProjects\AL-2020\coder\train_nn.py" />
|
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/coder/z8.py" />
|
||||||
<option name="PARAMETERS" value="" />
|
<option name="PARAMETERS" value="" />
|
||||||
<option name="SHOW_COMMAND_LINE" value="true" />
|
<option name="SHOW_COMMAND_LINE" value="true" />
|
||||||
<option name="EMULATE_TERMINAL" value="false" />
|
<option name="EMULATE_TERMINAL" value="false" />
|
||||||
@ -209,18 +220,18 @@
|
|||||||
</configuration>
|
</configuration>
|
||||||
<list>
|
<list>
|
||||||
<item itemvalue="Python.image" />
|
<item itemvalue="Python.image" />
|
||||||
<item itemvalue="Python.train_nn" />
|
|
||||||
<item itemvalue="Python.rocognizer" />
|
<item itemvalue="Python.rocognizer" />
|
||||||
<item itemvalue="Python.digits_recognizer" />
|
<item itemvalue="Python.digits_recognizer" />
|
||||||
<item itemvalue="Python.coder" />
|
<item itemvalue="Python.coder" />
|
||||||
|
<item itemvalue="Python.z8" />
|
||||||
</list>
|
</list>
|
||||||
<recent_temporary>
|
<recent_temporary>
|
||||||
<list>
|
<list>
|
||||||
<item itemvalue="Python.digits_recognizer" />
|
|
||||||
<item itemvalue="Python.coder" />
|
|
||||||
<item itemvalue="Python.rocognizer" />
|
<item itemvalue="Python.rocognizer" />
|
||||||
|
<item itemvalue="Python.coder" />
|
||||||
|
<item itemvalue="Python.digits_recognizer" />
|
||||||
|
<item itemvalue="Python.z8" />
|
||||||
<item itemvalue="Python.image" />
|
<item itemvalue="Python.image" />
|
||||||
<item itemvalue="Python.train_nn" />
|
|
||||||
</list>
|
</list>
|
||||||
</recent_temporary>
|
</recent_temporary>
|
||||||
</component>
|
</component>
|
||||||
@ -258,7 +269,10 @@
|
|||||||
<workItem from="1590436739719" duration="6325000" />
|
<workItem from="1590436739719" duration="6325000" />
|
||||||
<workItem from="1590443664804" duration="2943000" />
|
<workItem from="1590443664804" duration="2943000" />
|
||||||
<workItem from="1590497613517" duration="6041000" />
|
<workItem from="1590497613517" duration="6041000" />
|
||||||
<workItem from="1590518246722" duration="12460000" />
|
<workItem from="1590518246722" duration="12616000" />
|
||||||
|
<workItem from="1590559069326" duration="13892000" />
|
||||||
|
<workItem from="1590575699320" duration="792000" />
|
||||||
|
<workItem from="1590766924835" duration="4315000" />
|
||||||
</task>
|
</task>
|
||||||
<task id="LOCAL-00001" summary="create Shelf">
|
<task id="LOCAL-00001" summary="create Shelf">
|
||||||
<created>1589815443652</created>
|
<created>1589815443652</created>
|
||||||
@ -344,7 +358,14 @@
|
|||||||
<option name="project" value="LOCAL" />
|
<option name="project" value="LOCAL" />
|
||||||
<updated>1590447313737</updated>
|
<updated>1590447313737</updated>
|
||||||
</task>
|
</task>
|
||||||
<option name="localTasksCounter" value="13" />
|
<task id="LOCAL-00013" summary="add coder.py">
|
||||||
|
<created>1590538529471</created>
|
||||||
|
<option name="number" value="00013" />
|
||||||
|
<option name="presentableId" value="LOCAL-00013" />
|
||||||
|
<option name="project" value="LOCAL" />
|
||||||
|
<updated>1590538529471</updated>
|
||||||
|
</task>
|
||||||
|
<option name="localTasksCounter" value="14" />
|
||||||
<servers />
|
<servers />
|
||||||
</component>
|
</component>
|
||||||
<component name="TypeScriptGeneratedFilesManager">
|
<component name="TypeScriptGeneratedFilesManager">
|
||||||
@ -376,7 +397,8 @@
|
|||||||
<MESSAGE value="po" />
|
<MESSAGE value="po" />
|
||||||
<MESSAGE value="new dataset" />
|
<MESSAGE value="new dataset" />
|
||||||
<MESSAGE value="going to pytorch on conda eve" />
|
<MESSAGE value="going to pytorch on conda eve" />
|
||||||
<option name="LAST_COMMIT_MESSAGE" value="going to pytorch on conda eve" />
|
<MESSAGE value="add coder.py" />
|
||||||
|
<option name="LAST_COMMIT_MESSAGE" value="add coder.py" />
|
||||||
</component>
|
</component>
|
||||||
<component name="WindowStateProjectService">
|
<component name="WindowStateProjectService">
|
||||||
<state x="115" y="162" key="#com.intellij.refactoring.safeDelete.UnsafeUsagesDialog" timestamp="1589923610328">
|
<state x="115" y="162" key="#com.intellij.refactoring.safeDelete.UnsafeUsagesDialog" timestamp="1589923610328">
|
||||||
@ -403,10 +425,10 @@
|
|||||||
<screen x="0" y="0" width="1536" height="824" />
|
<screen x="0" y="0" width="1536" height="824" />
|
||||||
</state>
|
</state>
|
||||||
<state x="277" y="57" key="SettingsEditor/0.0.1536.824@0.0.1536.824" timestamp="1590443566792" />
|
<state x="277" y="57" key="SettingsEditor/0.0.1536.824@0.0.1536.824" timestamp="1590443566792" />
|
||||||
<state x="361" y="145" key="Vcs.Push.Dialog.v2" timestamp="1590447321698">
|
<state x="361" y="145" key="Vcs.Push.Dialog.v2" timestamp="1590538563335">
|
||||||
<screen x="0" y="0" width="1536" height="824" />
|
<screen x="0" y="0" width="1536" height="824" />
|
||||||
</state>
|
</state>
|
||||||
<state x="361" y="145" key="Vcs.Push.Dialog.v2/0.0.1536.824@0.0.1536.824" timestamp="1590447321698" />
|
<state x="361" y="145" key="Vcs.Push.Dialog.v2/0.0.1536.824@0.0.1536.824" timestamp="1590538563335" />
|
||||||
<state x="54" y="145" width="672" height="678" key="search.everywhere.popup" timestamp="1589918982407">
|
<state x="54" y="145" width="672" height="678" key="search.everywhere.popup" timestamp="1589918982407">
|
||||||
<screen x="0" y="0" width="1536" height="824" />
|
<screen x="0" y="0" width="1536" height="824" />
|
||||||
</state>
|
</state>
|
||||||
|
BIN
coder/12345.png
Normal file
BIN
coder/12345.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 10 KiB |
@ -4,47 +4,49 @@ import torchvision
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from time import time
|
from time import time
|
||||||
from torchvision import datasets, transforms
|
from torchvision import datasets, transforms
|
||||||
from torch import nn, optim, nn, optim
|
from torch import nn, optim
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
|
|
||||||
def view_classify(img, ps):
|
transform = transforms.Compose([transforms.ToTensor(),
|
||||||
''' Function for viewing an image and it's predicted classes.
|
transforms.Normalize((0.5,), (0.5,)),
|
||||||
'''
|
])
|
||||||
ps = ps.data.numpy().squeeze()
|
|
||||||
|
|
||||||
fig, (ax1, ax2) = plt.subplots(figsize=(6,9), ncols=2)
|
|
||||||
ax1.imshow(img.resize_(1, 28, 28).numpy().squeeze())
|
|
||||||
ax1.axis('off')
|
|
||||||
ax2.barh(np.arange(10), ps)
|
|
||||||
ax2.set_aspect(0.1)
|
|
||||||
ax2.set_yticks(np.arange(10))
|
|
||||||
ax2.set_yticklabels(np.arange(10))
|
|
||||||
ax2.set_title('Class Probability')
|
|
||||||
ax2.set_xlim(0, 1.1)
|
|
||||||
plt.tight_layout()
|
|
||||||
|
|
||||||
# load nn model
|
# load nn model
|
||||||
model = torch.load('digit_reco_model2.pt')
|
input_size = 784 # = 28*28
|
||||||
|
hidden_sizes = [128, 128, 64]
|
||||||
|
output_size = 10
|
||||||
|
model = nn.Sequential(nn.Linear(input_size, hidden_sizes[0]),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(hidden_sizes[0], hidden_sizes[1]),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(hidden_sizes[1], hidden_sizes[2]),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Linear(hidden_sizes[2], output_size),
|
||||||
|
nn.LogSoftmax(dim=-1))
|
||||||
|
model.load_state_dict(torch.load('digit_reco_model2.pt'))
|
||||||
|
model.eval()
|
||||||
|
# model = torch.load('digit_reco_model2.pt')
|
||||||
|
|
||||||
if model is None:
|
if model is None:
|
||||||
print("Model is not loaded.")
|
print("Model is not loaded.")
|
||||||
else:
|
else:
|
||||||
print("Model is loaded.")
|
print("Model is loaded.")
|
||||||
|
|
||||||
# image
|
|
||||||
img = cv2.cvtColor(cv2.imread('test3.png'), cv2.COLOR_BGR2GRAY)
|
|
||||||
img = cv2.blur(img, (9, 9)) # poprawia jakosc
|
|
||||||
img = cv2.resize(img, (28, 28), interpolation=cv2.INTER_AREA)
|
|
||||||
img = img.reshape((len(img), -1))
|
|
||||||
|
|
||||||
print(type(img))
|
# img from dataset
|
||||||
# print(img.shape)
|
val_set = datasets.MNIST('PATH_TO_STORE_TESTSET', download=True, train=False, transform=transform)
|
||||||
# plt.imshow(img ,cmap='binary')
|
|
||||||
# plt.show()
|
val_loader = torch.utils.data.DataLoader(val_set, batch_size=64, shuffle=True)
|
||||||
img = np.array(img, dtype=np.float32)
|
|
||||||
img = torch.from_numpy(img)
|
images, labels = next(iter(val_loader))
|
||||||
img = img.view(1, 784)
|
print(type(images))
|
||||||
|
img = images[0].view(1, 784)
|
||||||
|
plt.imshow(images[0].numpy().squeeze(), cmap='gray_r')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
# recognizing
|
# recognizing
|
||||||
|
|
||||||
@ -54,5 +56,3 @@ with torch.no_grad():
|
|||||||
ps = torch.exp(logps)
|
ps = torch.exp(logps)
|
||||||
probab = list(ps.numpy()[0])
|
probab = list(ps.numpy()[0])
|
||||||
print("Predicted Digit =", probab.index(max(probab)))
|
print("Predicted Digit =", probab.index(max(probab)))
|
||||||
|
|
||||||
view_classify(img.view(1, 28, 28), ps)
|
|
||||||
|
Binary file not shown.
Binary file not shown.
@ -5,6 +5,7 @@ import matplotlib.pyplot as plt
|
|||||||
from time import time
|
from time import time
|
||||||
from torchvision import datasets, transforms
|
from torchvision import datasets, transforms
|
||||||
from torch import nn, optim
|
from torch import nn, optim
|
||||||
|
import cv2
|
||||||
|
|
||||||
# IMG transform
|
# IMG transform
|
||||||
transform = transforms.Compose([transforms.ToTensor(),
|
transform = transforms.Compose([transforms.ToTensor(),
|
||||||
@ -17,15 +18,6 @@ val_set = datasets.MNIST('PATH_TO_STORE_TESTSET', download=True, train=False, tr
|
|||||||
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
|
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
|
||||||
val_loader = torch.utils.data.DataLoader(val_set, batch_size=64, shuffle=True)
|
val_loader = torch.utils.data.DataLoader(val_set, batch_size=64, shuffle=True)
|
||||||
|
|
||||||
data_iter = iter(train_loader)
|
|
||||||
images, labels = data_iter.next()
|
|
||||||
|
|
||||||
print(images.shape)
|
|
||||||
print(labels.shape)
|
|
||||||
|
|
||||||
plt.imshow(images[0].numpy().squeeze(), cmap='gray_r')
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
# building nn model
|
# building nn model
|
||||||
input_size = 784 # = 28*28
|
input_size = 784 # = 28*28
|
||||||
hidden_sizes = [128, 128, 64]
|
hidden_sizes = [128, 128, 64]
|
||||||
@ -48,15 +40,12 @@ images = images.view(images.shape[0], -1)
|
|||||||
logps = model(images) # log probabilities
|
logps = model(images) # log probabilities
|
||||||
loss = criterion(logps, labels) # calculate the NLL loss
|
loss = criterion(logps, labels) # calculate the NLL loss
|
||||||
|
|
||||||
# print('Before backward pass: \n', model[0].weight.grad)
|
|
||||||
loss.backward()
|
|
||||||
# print('After backward pass: \n', model[0].weight.grad)
|
|
||||||
|
|
||||||
# training
|
# training
|
||||||
|
|
||||||
optimizer = optim.SGD(model.parameters(), lr=0.003, momentum=0.9)
|
optimizer = optim.SGD(model.parameters(), lr=0.003, momentum=0.9)
|
||||||
time0 = time()
|
time0 = time()
|
||||||
epochs = 100
|
epochs = 1
|
||||||
for e in range(epochs):
|
for e in range(epochs):
|
||||||
running_loss = 0
|
running_loss = 0
|
||||||
for images, labels in train_loader:
|
for images, labels in train_loader:
|
||||||
@ -84,7 +73,6 @@ print("\nTraining Time (in minutes) =", (time() - time0) / 60)
|
|||||||
# testing
|
# testing
|
||||||
|
|
||||||
images, labels = next(iter(val_loader))
|
images, labels = next(iter(val_loader))
|
||||||
print(type(images))
|
|
||||||
img = images[0].view(1, 784)
|
img = images[0].view(1, 784)
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
logps = model(img)
|
logps = model(img)
|
||||||
@ -115,5 +103,5 @@ print("\nModel Accuracy =", (correct_count / all_count))
|
|||||||
|
|
||||||
# saving model
|
# saving model
|
||||||
|
|
||||||
# torch.save(model, './digit_reco_model.pt')
|
# torch.save(model.state_dict(), './digit_reco_model.pt')
|
||||||
torch.save(model, './digit_reco_model2.pt')
|
# torch.save(model.state_dict(), './digit_reco_model2.pt')
|
@ -6,6 +6,7 @@ from sklearn.metrics import accuracy_score
|
|||||||
from sklearn.neural_network import MLPClassifier
|
from sklearn.neural_network import MLPClassifier
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import cv2
|
import cv2
|
||||||
|
import keras
|
||||||
|
|
||||||
# 28x28
|
# 28x28
|
||||||
train_data = np.genfromtxt('dataset/train.csv', delimiter=',', skip_header=1, max_rows=20000, encoding='utf-8')
|
train_data = np.genfromtxt('dataset/train.csv', delimiter=',', skip_header=1, max_rows=20000, encoding='utf-8')
|
||||||
|
BIN
coder/ll.png
Normal file
BIN
coder/ll.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 14 KiB |
@ -3,35 +3,34 @@ import argparse
|
|||||||
import imutils
|
import imutils
|
||||||
import cv2
|
import cv2
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
img = cv2.cvtColor(cv2.imread('barcode.jpg'), cv2.COLOR_BGR2GRAY)
|
path = "test1.jpg"
|
||||||
|
|
||||||
ddepth = cv2.cv.CV_32F if imutils.is_cv2() else cv2.CV_32F
|
img = cv2.imread(path)
|
||||||
X = cv2.Sobel(img, ddepth=ddepth, dx=1, dy=0, ksize=-1)
|
|
||||||
Y = cv2.Sobel(img, ddepth=ddepth, dx=0, dy=1, ksize=-1)
|
|
||||||
|
|
||||||
gradient = cv2.subtract(X, Y)
|
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||||
gradient = cv2.convertScaleAbs(gradient)
|
img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0)
|
||||||
|
|
||||||
blurred = cv2.blur(gradient, (9, 9))
|
ret, im_th = cv2.threshold(img_gray, 90, 255, cv2.THRESH_BINARY_INV)
|
||||||
(_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)
|
|
||||||
|
|
||||||
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
|
ctrs, hier = cv2.findContours(im_th.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
|
|
||||||
closed = cv2.erode(closed, None, iterations=4)
|
|
||||||
closed = cv2.dilate(closed, None, iterations=4)
|
|
||||||
|
|
||||||
cnts = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
rects = [cv2.boundingRect(ctr) for ctr in ctrs]
|
||||||
cnts = imutils.grab_contours(cnts)
|
|
||||||
c = sorted(cnts, key=cv2.contourArea, reverse=True)[0]
|
|
||||||
|
|
||||||
rect = cv2.minAreaRect(c)
|
for rect in rects:
|
||||||
box = cv2.cv.BoxPoints(rect) if imutils.is_cv2() else cv2.boxPoints(rect)
|
# Draw the rectangles
|
||||||
box = np.int0(box)
|
cv2.rectangle(img, (rect[0], rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (0, 255, 0), 3)
|
||||||
|
# Make the rectangular region around the digit
|
||||||
|
leng = int(rect[3] * 1.6)
|
||||||
|
pt1 = int(rect[1] + rect[3] // 2 - leng // 2)
|
||||||
|
pt2 = int(rect[0] + rect[2] // 2 - leng // 2)
|
||||||
|
roi = im_th[pt1:pt1+leng, pt2:pt2+leng]
|
||||||
|
# Resize the image
|
||||||
|
roi = cv2.resize(roi, (28, 28), interpolation=cv2.INTER_AREA)
|
||||||
|
roi = cv2.dilate(roi, (3, 3))
|
||||||
|
# Calculate the HOG features
|
||||||
|
|
||||||
cv2.drawContours(img, [box], -1, (0, 255, 0), 3)
|
cv2.imshow("Resulting Image with Rectangular ROIs", img)
|
||||||
cv2.imshow("Image", img)
|
cv2.waitKey()
|
||||||
cv2.waitKey(0)
|
|
||||||
|
|
||||||
plt.imshow(closed ,cmap='binary')
|
|
||||||
plt.show()
|
|
BIN
coder/testno.png
Normal file
BIN
coder/testno.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.7 KiB |
Loading…
Reference in New Issue
Block a user