import numpy as np from PIL import Image import matplotlib.pyplot as plt from sklearn import datasets from sklearn.metrics import accuracy_score from sklearn.neural_network import MLPClassifier import pandas as pd import cv2 #28x28 train_data = np.genfromtxt('dataset/train.csv', delimiter=',', skip_header=1 ,max_rows=20000, encoding='utf-8') test_data = np.genfromtxt('dataset/test.csv', delimiter=',' , skip_header=1, max_rows=20000, encoding='utf-8') # training # recznie napisane cyfry digits = datasets.load_digits() y = digits.target x = digits.images.reshape((len(digits.images), -1)) #ogarnac zbior, zwiekszyc warstwy x_train = train_data[0:20000, 1:] y_train = train_data[0:20000, 0] x_test = test_data[0:20000] y_test = test_data[0:20000, 0] # x_train = x[:900] # y_train = y[:900] # x_test = x[900:] # y_test = y[900:] print(x_test[0].shape, y_test[9].shape) mlp = MLPClassifier(hidden_layer_sizes=(100, 100, 100, 100), activation='logistic', alpha=1e-4, solver='sgd', tol=0.000000000001, random_state=1, learning_rate_init=.1, verbose=True, max_iter=1000) mlp.fit(x_train, y_train) print(123456789) predictions = mlp.predict(x_test) print(123456789) print("Accuracy: ", accuracy_score(y_test, predictions)) # image img = cv2.cvtColor(cv2.imread('test5.jpg'), cv2.COLOR_BGR2GRAY) img = cv2.blur(img, (9, 9)) # poprawia jakosc img = cv2.resize(img, (28, 28), interpolation=cv2.INTER_AREA) img = img.reshape((len(img), -1)) print(type(img)) print(img.shape) print(img) plt.imshow(img ,cmap='binary') plt.show() data = [] rows, cols = img.shape for i in range(rows): for j in range(cols): k = img[i, j] if k > 225: k = 0 # brak czarnego else: k = 1 data.append(k) data = np.asarray(data, dtype=np.float32) print(data) predictions = mlp.predict([data]) print("Liczba to:", predictions[0])