import numpy as np import argparse import imutils import cv2 import matplotlib.pyplot as plt img = cv2.cvtColor(cv2.imread('barcode.jpg'), cv2.COLOR_BGR2GRAY) ddepth = cv2.cv.CV_32F if imutils.is_cv2() else cv2.CV_32F X = cv2.Sobel(img, ddepth=ddepth, dx=1, dy=0, ksize=-1) Y = cv2.Sobel(img, ddepth=ddepth, dx=0, dy=1, ksize=-1) gradient = cv2.subtract(X, Y) gradient = cv2.convertScaleAbs(gradient) blurred = cv2.blur(gradient, (9, 9)) (_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7)) closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) closed = cv2.erode(closed, None, iterations=4) closed = cv2.dilate(closed, None, iterations=4) cnts = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) c = sorted(cnts, key=cv2.contourArea, reverse=True)[0] rect = cv2.minAreaRect(c) box = cv2.cv.BoxPoints(rect) if imutils.is_cv2() else cv2.boxPoints(rect) box = np.int0(box) cv2.drawContours(img, [box], -1, (0, 255, 0), 3) cv2.imshow("Image", img) cv2.waitKey(0) plt.imshow(closed ,cmap='binary') plt.show()