ireland-news-headlines/run.py
2022-05-27 21:21:57 +02:00

78 lines
1.2 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[208]:
import pandas as pd
import vowpalwabbit
from sklearn import preprocessing
# In[209]:
vw = vowpalwabbit.Workspace('--oaa 20')
# In[210]:
X_train = pd.read_csv('train\in.tsv', sep='\t', usecols=[2], names=['text'])
Y_train = pd.read_csv('train\expected.tsv', sep='\t', usecols=[0], names=['class'])
# In[211]:
Y_train['class'].unique()
# In[212]:
le = preprocessing.LabelEncoder()
le.fit(['business', 'culture', 'lifestyle', 'news', 'opinion', 'removed', 'sport'])
Y_train['class'] = le.fit_transform(Y_train['class'])
# In[213]:
for x, y in zip(X_train['text'], Y_train['class']):
vw.learn(f'{y} | text:{x}')
# In[216]:
def make_prediction(path_in, path_out):
test_set = pd.read_csv(path_in, sep='\t', usecols=[2], names=['text'])
predictions = []
for x in X_dev0['text']:
predictions.append(vw.predict(f'| text:{x}'))
predictions = le.inverse_transform(predictions)
file = open(path_out, 'w')
for pred in predictions:
file.write(f'{pred}\n')
file.close()
# In[217]:
make_prediction('dev-0\in.tsv', 'dev-0\out.tsv')
# In[218]:
make_prediction('test-A\in.tsv', 'test-A\out.tsv')
# In[219]:
make_prediction('test-B\in.tsv', 'test-B\out.tsv')