ium_444421/training_mlflow.py

132 lines
3.2 KiB
Python
Raw Normal View History

2022-05-15 14:22:54 +02:00
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
import numpy as np
import pandas as pd
from sklearn.metrics import accuracy_score
import torch
from torch import nn, optim
import torch.nn.functional as F
import sys
import mlflow
from urllib.parse import urlparse
# In[ ]:
2022-05-17 21:48:39 +02:00
mlflow.set_tracking_uri("http://172.17.0.1:5000")
2022-05-15 14:22:54 +02:00
mlflow.set_experiment("s444421")
# In[ ]:
epochs = int(sys.argv[1])
# In[ ]:
def prepare_data():
X_train = pd.read_csv('X_train.csv')
y_train = pd.read_csv('y_train.csv')
X_train = torch.from_numpy(np.array(X_train)).float()
y_train = torch.squeeze(torch.from_numpy(y_train.values).float())
return X_train, y_train
# In[ ]:
class Net(nn.Module):
def __init__(self, n_features):
super(Net, self).__init__()
self.fc1 = nn.Linear(n_features, 5)
self.fc2 = nn.Linear(5, 3)
self.fc3 = nn.Linear(3, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return torch.sigmoid(self.fc3(x))
# In[ ]:
def calculate_accuracy(y_true, y_pred):
predicted = y_pred.ge(.5).view(-1)
return (y_true == predicted).sum().float() / len(y_true)
# In[ ]:
def round_tensor(t, decimal_places=3):
return round(t.item(), decimal_places)
# In[ ]:
def train_model(X_train, y_train, device, epochs):
net = Net(X_train.shape[1])
criterion = nn.BCELoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
X_train = X_train.to(device)
y_train = y_train.to(device)
net = net.to(device)
criterion = criterion.to(device)
for epoch in range(epochs):
y_pred = net(X_train)
y_pred = torch.squeeze(y_pred)
train_loss = criterion(y_pred, y_train)
if epoch % 100 == 0:
train_acc = calculate_accuracy(y_train, y_pred)
print(
f'''epoch {epoch}
Train set - loss: {round_tensor(train_loss)}, accuracy: {round_tensor(train_acc)}
''')
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
return net, round_tensor(train_loss)
# In[ ]:
def my_main(epochs):
X_train, y_train = prepare_data()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model, loss = train_model(X_train, y_train, device, epochs)
torch.save(model, 'model.pth')
mlflow.log_param("epochs", epochs)
mlflow.log_metric("loss", loss)
X_test = pd.read_csv('X_test.csv')
X_test = torch.from_numpy(np.array(X_test)).float()
X_test = X_test.to(device)
y_pred = model(X_test)
y_pred = y_pred.ge(.5).view(-1).cpu()
signature = mlflow.models.signature.infer_signature(X_train.numpy(), np.array(y_pred))
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
if tracking_url_type_store != "file":
2022-05-17 21:21:31 +02:00
mlflow.sklearn.log_model(model, "s444421", registered_model_name="s444421", signature=signature, input_example=X_test.numpy()[:5])
2022-05-15 14:22:54 +02:00
else:
2022-05-17 21:21:31 +02:00
mlflow.sklearn.log_model(model, "s444421", signature=signature, input_example=X_test.numpy()[:5])
2022-05-15 14:22:54 +02:00
# In[ ]:
with mlflow.start_run() as run:
print("MLflow run experiment_id: {0}".format(run.info.experiment_id))
print("MLflow run artifact_uri: {0}".format(run.info.artifact_uri))
my_main(epochs)