ium_444421/evaluation.py

90 lines
1.5 KiB
Python
Raw Normal View History

2022-04-29 20:55:27 +02:00
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
import numpy as np
import pandas as pd
from sklearn.metrics import accuracy_score
import torch
from torch import nn, optim
import torch.nn.functional as F
2022-04-29 22:51:30 +02:00
import matplotlib.pyplot as plt
2022-04-29 20:55:27 +02:00
# In[ ]:
class Net(nn.Module):
def __init__(self, n_features):
super(Net, self).__init__()
self.fc1 = nn.Linear(n_features, 5)
self.fc2 = nn.Linear(5, 3)
self.fc3 = nn.Linear(3, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return torch.sigmoid(self.fc3(x))
# In[ ]:
X_test = pd.read_csv('X_test.csv')
y_test = pd.read_csv('y_test.csv')
# In[ ]:
X_test = torch.from_numpy(np.array(X_test)).float()
y_test = torch.squeeze(torch.from_numpy(y_test.values).float())
# In[ ]:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
X_test = X_test.to(device)
y_test = y_test.to(device)
# In[ ]:
net = torch.load('model.pth')
# In[ ]:
y_pred = net(X_test)
y_pred = y_pred.ge(.5).view(-1).cpu()
y_test = y_test.cpu()
# In[ ]:
accuracy = accuracy_score(y_test, y_pred)
with open('build_accuracy.txt', 'a') as file:
file.write(str(accuracy))
file.write('\n')
2022-04-29 22:51:30 +02:00
# In[ ]:
with open('build_accuracy.txt') as file:
acc = [float(line.rstrip()) for line in file]
builds = list(range(1, len(acc) + 1))
plt.xlabel('build')
plt.ylabel('accuracy')
plt.plot(builds, acc, 'ro')
plt.show()
plt.savefig('bilds_accuracy.jpg')