ium_444421/training_sacred.py

114 lines
2.6 KiB
Python
Raw Normal View History

2022-05-06 09:53:37 +02:00
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
import numpy as np
import pandas as pd
from sklearn.metrics import accuracy_score
import torch
from torch import nn, optim
import torch.nn.functional as F
import sys
from sacred import Experiment
2022-05-08 15:53:03 +02:00
from sacred.observers import FileStorageObserver, MongoObserver
2022-05-06 09:53:37 +02:00
# In[ ]:
2022-05-08 15:53:03 +02:00
ex = Experiment(save_git_info=False)
2022-05-09 09:56:41 +02:00
ex.observers.append(FileStorageObserver('my_runs'))
2022-05-09 09:51:17 +02:00
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
2022-05-06 09:53:37 +02:00
@ex.config
def my_config():
epochs = 400
# In[ ]:
def prepare_data():
X_train = pd.read_csv('X_train.csv')
y_train = pd.read_csv('y_train.csv')
X_train = torch.from_numpy(np.array(X_train)).float()
y_train = torch.squeeze(torch.from_numpy(y_train.values).float())
return X_train, y_train
# In[ ]:
class Net(nn.Module):
def __init__(self, n_features):
super(Net, self).__init__()
self.fc1 = nn.Linear(n_features, 5)
self.fc2 = nn.Linear(5, 3)
self.fc3 = nn.Linear(3, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return torch.sigmoid(self.fc3(x))
# In[ ]:
def calculate_accuracy(y_true, y_pred):
predicted = y_pred.ge(.5).view(-1)
return (y_true == predicted).sum().float() / len(y_true)
# In[ ]:
def round_tensor(t, decimal_places=3):
return round(t.item(), decimal_places)
# In[ ]:
def train_model(X_train, y_train, device, epochs):
net = Net(X_train.shape[1])
criterion = nn.BCELoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
X_train = X_train.to(device)
y_train = y_train.to(device)
net = net.to(device)
criterion = criterion.to(device)
for epoch in range(epochs):
y_pred = net(X_train)
y_pred = torch.squeeze(y_pred)
train_loss = criterion(y_pred, y_train)
if epoch % 100 == 0:
train_acc = calculate_accuracy(y_train, y_pred)
print(
f'''epoch {epoch}
Train set - loss: {round_tensor(train_loss)}, accuracy: {round_tensor(train_acc)}
''')
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
return net, round_tensor(train_loss)
# In[ ]:
@ex.automain
def my_main(epochs, _run):
X_train, y_train = prepare_data()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model, loss = train_model(X_train, y_train, device, epochs)
torch.save(model, 'model.pth')
ex.add_artifact('model.pth')
_run.info["epochs"] = epochs
_run.info["loss"] = loss