Update script (sacred)
This commit is contained in:
parent
59e2ea929d
commit
09ded0b055
115
training.py
115
training.py
@ -6,30 +6,39 @@
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.metrics import accuracy_score
|
||||
import torch
|
||||
from torch import nn, optim
|
||||
import torch.nn.functional as F
|
||||
import sys
|
||||
from sacred import Experiment
|
||||
from sacred.observers import FileStorageObserver
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
epochs = int(sys.argv[1])
|
||||
ex = Experiment("file_observer", save_git_info=False)
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs = 400
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
X_train = pd.read_csv('X_train.csv')
|
||||
y_train = pd.read_csv('y_train.csv')
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
X_train = torch.from_numpy(np.array(X_train)).float()
|
||||
y_train = torch.squeeze(torch.from_numpy(y_train.values).float())
|
||||
def prepare_data():
|
||||
X_train = pd.read_csv('X_train.csv')
|
||||
y_train = pd.read_csv('y_train.csv')
|
||||
X_train = torch.from_numpy(np.array(X_train)).float()
|
||||
y_train = torch.squeeze(torch.from_numpy(y_train.values).float())
|
||||
X_test = pd.read_csv('X_test.csv')
|
||||
y_test = pd.read_csv('y_test.csv')
|
||||
X_test = torch.from_numpy(np.array(X_test)).float()
|
||||
y_test = torch.squeeze(torch.from_numpy(y_test.values).float())
|
||||
return X_train, y_train
|
||||
|
||||
|
||||
# In[ ]:
|
||||
@ -50,51 +59,75 @@ class Net(nn.Module):
|
||||
# In[ ]:
|
||||
|
||||
|
||||
net = Net(X_train.shape[1])
|
||||
criterion = nn.BCELoss()
|
||||
optimizer = optim.Adam(net.parameters(), lr=0.001)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
X_train = X_train.to(device)
|
||||
y_train = y_train.to(device)
|
||||
|
||||
net = net.to(device)
|
||||
criterion = criterion.to(device)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
def calculate_accuracy(y_true, y_pred):
|
||||
predicted = y_pred.ge(.5).view(-1)
|
||||
return (y_true == predicted).sum().float() / len(y_true)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
def round_tensor(t, decimal_places=3):
|
||||
return round(t.item(), decimal_places)
|
||||
|
||||
# In[ ]:
|
||||
|
||||
for epoch in range(epochs):
|
||||
y_pred = net(X_train)
|
||||
y_pred = torch.squeeze(y_pred)
|
||||
train_loss = criterion(y_pred, y_train)
|
||||
if epoch % 100 == 0:
|
||||
train_acc = calculate_accuracy(y_train, y_pred)
|
||||
print(
|
||||
f'''epoch {epoch}
|
||||
Train set - loss: {round_tensor(train_loss)}, accuracy: {round_tensor(train_acc)}
|
||||
''')
|
||||
|
||||
def train_model(X_train, y_train, device, epochs):
|
||||
net = Net(X_train.shape[1])
|
||||
criterion = nn.BCELoss()
|
||||
optimizer = optim.Adam(net.parameters(), lr=0.001)
|
||||
|
||||
X_train = X_train.to(device)
|
||||
y_train = y_train.to(device)
|
||||
|
||||
net = net.to(device)
|
||||
criterion = criterion.to(device)
|
||||
|
||||
for epoch in range(epochs):
|
||||
y_pred = net(X_train)
|
||||
y_pred = torch.squeeze(y_pred)
|
||||
train_loss = criterion(y_pred, y_train)
|
||||
if epoch % 100 == 0:
|
||||
train_acc = calculate_accuracy(y_train, y_pred)
|
||||
print(
|
||||
f'''epoch {epoch}
|
||||
Train set - loss: {round_tensor(train_loss)}, accuracy: {round_tensor(train_acc)}
|
||||
''')
|
||||
optimizer.zero_grad()
|
||||
train_loss.backward()
|
||||
optimizer.step()
|
||||
return net
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
torch.save(net, 'model.pth')
|
||||
def evaluate_model(X_test, y_test, device):
|
||||
X_test = X_test.to(device)
|
||||
y_test = y_test.to(device)
|
||||
net = torch.load('model.pth')
|
||||
y_pred = net(X_test)
|
||||
y_pred = y_pred.ge(.5).view(-1).cpu()
|
||||
y_test = y_test.cpu()
|
||||
accuracy = accuracy_score(y_test, y_pred)
|
||||
return accuracy
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
@ex.automain
|
||||
def my_main(epochs, _run):
|
||||
_run.info["epochs"] = epochs
|
||||
X_train, X_test, y_train, y_test = prepare_data()
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
model = train_model(X_train, y_train, device, epochs)
|
||||
torch.save(model, 'model.pth')
|
||||
ex.add_artifact('model.pth')
|
||||
|
||||
accuracy = evaluate_model(X_test, y_test, device)
|
||||
print(accuracy)
|
||||
_run.info["accuracy"] = accuracy
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user