From 83b32cbea7a73a235c27d1bf5df592386c733951 Mon Sep 17 00:00:00 2001 From: Agata Date: Sun, 10 Apr 2022 10:57:44 +0200 Subject: [PATCH] Convert preparation.ipynb file to python script --- preparation.py | 104 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 104 insertions(+) create mode 100644 preparation.py diff --git a/preparation.py b/preparation.py new file mode 100644 index 0000000..66c0236 --- /dev/null +++ b/preparation.py @@ -0,0 +1,104 @@ +#!/usr/bin/env python +# coding: utf-8 + +# In[ ]: + + +# get_ipython().system('kaggle datasets download -d tejashvi14/travel-insurance-prediction-data') + + +# In[ ]: + + +get_ipython().system('unzip -o travel-insurance-prediction-data.zip') + + +# In[5]: + + +import pandas as pd +travel_insurance=pd.read_csv('TravelInsurancePrediction.csv', index_col=0) +travel_insurance + + +# In[ ]: + + +# usunięcie wierszy zawierających braki +travel_insurance.dropna(axis='index', how='any') + + +# In[6]: + + +# normalizacja danych +for column in travel_insurance.columns: + if travel_insurance[column].dtype == 'object': + travel_insurance[column] = travel_insurance[column].str.lower() + +travel_insurance + + +# In[8]: + + +# podział na podzbiory train/dev/test +import sklearn +from sklearn.model_selection import train_test_split +travel_insurance_train, travel_insurance_rest = sklearn.model_selection.train_test_split(travel_insurance, test_size=0.4, random_state=1) +travel_insurance_test, travel_insurance_dev = sklearn.model_selection.train_test_split(travel_insurance_rest, test_size=0.5, random_state=1) + + +# In[27]: + + +travel_insurance.describe(include='all') + + +# In[23]: + + +# zwracanie informacji o danym zbiorze + +import seaborn as sns + +def printInformation(data): + print(f'Size (rows): {len(data)}\n') + mean_value = data.mean() + min_value = data.min(numeric_only=True) + max_value = data.max(numeric_only=True) + std_value = data.std() + median_value = data.median() + print(f'(mean)\n{mean_value}', f'(min)\n{min_value}', f'(max)\n{max_value}', f'(std)\n{std_value}', f'(median)\n{median_value}', sep="\n\n") + sns.pairplot(data=data, hue="TravelInsurance") + + +# In[24]: + + +printInformation(travel_insurance) + + +# In[11]: + + +printInformation(travel_insurance_train) + + +# In[12]: + + +printInformation(travel_insurance_test) + + +# In[13]: + + +printInformation(travel_insurance_dev) + + +# In[ ]: + + + +