#!/usr/bin/env python # coding: utf-8 # In[ ]: # get_ipython().system('kaggle datasets download -d tejashvi14/travel-insurance-prediction-data') # In[ ]: get_ipython().system('unzip -o travel-insurance-prediction-data.zip') # In[5]: import pandas as pd travel_insurance=pd.read_csv('TravelInsurancePrediction.csv', index_col=0) travel_insurance # In[ ]: # usunięcie wierszy zawierających braki travel_insurance.dropna(axis='index', how='any') # In[6]: # normalizacja danych for column in travel_insurance.columns: if travel_insurance[column].dtype == 'object': travel_insurance[column] = travel_insurance[column].str.lower() travel_insurance # In[8]: # podział na podzbiory train/dev/test import sklearn from sklearn.model_selection import train_test_split travel_insurance_train, travel_insurance_rest = sklearn.model_selection.train_test_split(travel_insurance, test_size=0.4, random_state=1) travel_insurance_test, travel_insurance_dev = sklearn.model_selection.train_test_split(travel_insurance_rest, test_size=0.5, random_state=1) # In[27]: travel_insurance.describe(include='all') # In[23]: # zwracanie informacji o danym zbiorze import seaborn as sns def printInformation(data): print(f'Size (rows): {len(data)}\n') mean_value = data.mean() min_value = data.min(numeric_only=True) max_value = data.max(numeric_only=True) std_value = data.std() median_value = data.median() print(f'(mean)\n{mean_value}', f'(min)\n{min_value}', f'(max)\n{max_value}', f'(std)\n{std_value}', f'(median)\n{median_value}', sep="\n\n") sns.pairplot(data=data, hue="TravelInsurance") # In[24]: printInformation(travel_insurance) # In[11]: printInformation(travel_insurance_train) # In[12]: printInformation(travel_insurance_test) # In[13]: printInformation(travel_insurance_dev) # In[ ]: