import mlflow import numpy as np model = mlflow.pyfunc.load_model('/mlruns/1/e435ee5c0c5a468c99eb43c13df4a94b/artifacts/s444421') with open('input_example.json') as f: input = json.load(f) y_predicted = model.predict(np.array([data['inputs']]).reshape(-1, 2)) print(y_predicted[:5])