pipeline { agent { docker { image 'agakul/ium:mlflow' args '-v /mlruns:/mlruns' } } parameters { buildSelector( defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'BUILD_SELECTOR' ) string( defaultValue: '1000', description: 'Number of epochs', name: 'EPOCHS' ) } stages { stage('Check out from version control') { steps { checkout([$class: 'GitSCM', branches: [[name: '*/training_and_evaluation']], extensions: [], userRemoteConfigs: [[credentialsId: 's444421', url: 'https://git.wmi.amu.edu.pl/s444421/ium_444421.git']]]) } } stage('Training') { steps { copyArtifacts filter: '*', projectName:'s444421-create-dataset', selector: buildParameter('BUILD_SELECTOR') sh 'python training_mlflow.py $EPOCHS' archiveArtifacts artifacts: 'mlruns/**' } } } }