pipeline { agent { docker { image 'agakul/ium:mlflow'} } parameters { buildSelector( defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'BUILD_SELECTOR' ) string( defaultValue: '{\\"inputs\\": [[167.39999389648438, 72.18000030517578, 40.0, 21.0, 94.0], [162.3000030517578, 67.30000305175781, 18.0, 52.0, 219.0], [178.5, 90.5, 14.699999809265137, 45.0, 262.0], [180.89999389648438, 77.0999984741211, 25.399999618530273, 43.0, 224.0], [177.3000030517578, 88.4800033569336, 35.599998474121094, 18.0, 183.0]]}', description: 'Inputs', name: 'INPUT' ) } stages { stage('Copy artifacts') { steps { copyArtifacts fingerprintArtifacts: true, projectName: 's444421-training/training_and_evaluation', selector: buildParameter('BUILD_SELECTOR') } } stage('Predict') { steps { sh "echo ${params.INPUT} > input_example.json" sh "python predict_444501.py" } } } }