9 lines
295 B
Python
9 lines
295 B
Python
import mlflow
|
|
import numpy as np
|
|
|
|
model = mlflow.pyfunc.load_model('mlruns/1/e435ee5c0c5a468c99eb43c13df4a94b/artifacts/s444421')
|
|
|
|
with open('input_example.json') as f:
|
|
input = json.load(f)
|
|
y_predicted = model.predict(np.array([data['inputs']]).reshape(-1, 2))
|
|
print(y_predicted[:5]) |