petite-difference-challenge2/run.py
2022-04-25 19:03:08 +02:00

150 lines
2.5 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[ ]:
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
from sklearn.metrics import accuracy_score
# In[ ]:
unxz train/in.tsv.xz
# In[ ]:
f = open("train/in.tsv", "r", encoding='utf-8')
lines = f.readlines()
x_train = pd.DataFrame(lines)
x_train.rename(columns = {0 : 'text'}, inplace = True)
# In[ ]:
y_train = pd.read_csv('expected.tsv', sep='\t', names=['male'], encoding='utf-8')
# In[ ]:
tfidf_vectorizer=TfidfVectorizer(use_idf=True, max_df=0.95)
tfidf_vectorizer.fit_transform(x_train['text'].values)
x_train_prepared = tfidf_vectorizer.transform(x_train['text'].values)
# In[ ]:
model = LogisticRegression()
model.fit(x_train_prepared, y_train)
# In[ ]:
f = open("dev-0/in.tsv", "r", encoding='utf-8')
lines_dev_0 = f.readlines()
x_test_dev_0 = pd.DataFrame(lines_dev_0)
# In[ ]:
x_test_dev_0.rename(columns = {0 : 'text'}, inplace = True)
x_test_dev_0_prepared = tfidf_vectorizer.transform(x_test_dev_0['text'].values)
# In[ ]:
y_dev_0_expected = pd.read_csv('expected.tsv', sep='\t', names=['male'], encoding='utf-8')
# In[ ]:
y_dev_0_predicted = model.predict(x_test_dev_0_prepared)
file = open('out.tsv', 'w')
for y in y_dev_0_predicted:
file.write(f'{y}\n')
file.close()
accuracy_dev_0 = accuracy_score(y_expected, y_predicted)
accuracy_dev_0
# In[ ]:
f = open("dev-1/in.tsv", "r", encoding='utf-8')
lines_dev_1 = f.readlines()
f.close()
# In[ ]:
x_test_dev_1 = pd.DataFrame(lines_dev_1)
x_test_dev_1.rename(columns = {0 : 'text'}, inplace = True)
x_test_dev_1_prepared = tfidf_vectorizer.transform(x_test_dev_1['text'].values)
# In[ ]:
y_dev_1_expected = pd.read_csv('expected.tsv', sep='\t', names=['male'], encoding='utf-8')
# In[ ]:
y_dev_1_predicted = model.predict(x_test_dev_1_prepared)
file = open('out.tsv', 'w')
for y in y_dev_1_predicted:
file.write(f'{y}\n')
file.close()
accuracy_dev_1 = accuracy_score(y_dev_1_expected, y_dev_1_predicted)
accuracy_dev_1
# In[ ]:
f = open("test-A/in.tsv", "r", encoding='utf-8')
lines_testing = f.readlines()
f.close()
# In[ ]:
x_testing = pd.DataFrame(lines_testing)
x_testing.rename(columns = {0 : 'text'}, inplace = True)
x_testing_prepared = tfidf_vectorizer.transform(x_testing['text'].values)
# In[ ]:
y_testing_predicted = model.predict(x_testing_prepared)
# In[ ]:
file = open('out.tsv', 'w')
for y in y_testing_predicted:
file.write(f'{y}\n')
file.close()