CatOrNot/main.py

67 lines
1.5 KiB
Python
Raw Normal View History

2020-01-06 16:11:15 +01:00
import cv2
import numpy as np
import json
from flask import Flask, url_for
app = Flask("Kotely")
@app.route('/')
def api_root():
return 'Welcome'
@app.route('/image/<path:imagepath>')
def info(imagepath):
return recognition("/"+imagepath)
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
def recognition(photo):
image = cv2.imread(photo)
Width = image.shape[1]
Height = image.shape[0]
scale = 0.00392
with open("yolov3.txt", 'r') as f:
classes = [line.strip() for line in f.readlines()]
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(get_output_layers(net))
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
class_ids.append(class_id)
data = '{"path":"'+photo+'"}'
js = json.loads(data)
if 15 in class_ids:
js.update({"cat":1})
return js
else:
js.update({"cat": 0})
return js
if __name__ == '__main__':
app.run(port="8809")