Zmiana readme, poprzednie bylo od YOLO module
This commit is contained in:
parent
f91c4984a8
commit
9e803e412a
42
README.md
42
README.md
@ -1,43 +1,11 @@
|
||||
# Object detection using deep learning with OpenCV and Python
|
||||
# Moduł rozpoznawania kota na zdjęciu
|
||||
|
||||
OpenCV `dnn` module supports running inference on pre-trained deep learning models from popular frameworks like Caffe, Torch and TensorFlow.
|
||||
Moduł dostaje ścieżkę niezależną do zdjęcia i na podstawie tego zdjęcie podaje JSONa czy jest kot czy go też nie ma
|
||||
|
||||
When it comes to object detection, popular detection frameworks are
|
||||
* YOLO
|
||||
* SSD
|
||||
* Faster R-CNN
|
||||
|
||||
Support for running YOLO/DarkNet has been added to OpenCV dnn module recently.
|
||||
|
||||
## Dependencies
|
||||
## Zależności
|
||||
* opencv
|
||||
* numpy
|
||||
* flask
|
||||
|
||||
`pip install numpy opencv-python`
|
||||
`pip3 install numpy opencv-python flask`
|
||||
|
||||
**Note: Compatability with Python 2.x is not officially tested.**
|
||||
|
||||
## YOLO (You Only Look Once)
|
||||
|
||||
Download the pre-trained YOLO v3 weights file from this [link](https://pjreddie.com/media/files/yolov3.weights) and place it in the current directory or you can directly download to the current directory in terminal using
|
||||
|
||||
`$ wget https://pjreddie.com/media/files/yolov3.weights`
|
||||
|
||||
Provided all the files are in the current directory, below command will apply object detection on the input image `dog.jpg`.
|
||||
|
||||
`$ python yolo_opencv.py --image dog.jpg --config yolov3.cfg --weights yolov3.weights --classes yolov3.txt`
|
||||
|
||||
|
||||
**Command format**
|
||||
|
||||
_$ python yolo_opencv.py --image /path/to/input/image --config /path/to/config/file --weights /path/to/weights/file --classes /path/to/classes/file_
|
||||
|
||||
Checkout the [blog post](http://www.arunponnusamy.com/yolo-object-detection-opencv-python.html) to learn more.
|
||||
|
||||
### sample output :
|
||||
![](object-detection.jpg)
|
||||
|
||||
Checkout the object detection implementation available in [cvlib](http:cvlib.net) which enables detecting common objects in the context through a single function call `detect_common_objects()`.
|
||||
|
||||
|
||||
(_SSD and Faster R-CNN examples will be added soon_)
|
||||
|
Loading…
Reference in New Issue
Block a user