# Object detection using deep learning with OpenCV and Python OpenCV `dnn` module supports running inference on pre-trained deep learning models from popular frameworks like Caffe, Torch and TensorFlow. When it comes to object detection, popular detection frameworks are * YOLO * SSD * Faster R-CNN Support for running YOLO/DarkNet has been added to OpenCV dnn module recently. ## Dependencies * opencv * numpy `pip install numpy opencv-python` **Note: Compatability with Python 2.x is not officially tested.** ## YOLO (You Only Look Once) Download the pre-trained YOLO v3 weights file from this [link](https://pjreddie.com/media/files/yolov3.weights) and place it in the current directory or you can directly download to the current directory in terminal using `$ wget https://pjreddie.com/media/files/yolov3.weights` Provided all the files are in the current directory, below command will apply object detection on the input image `dog.jpg`. `$ python yolo_opencv.py --image dog.jpg --config yolov3.cfg --weights yolov3.weights --classes yolov3.txt` **Command format** _$ python yolo_opencv.py --image /path/to/input/image --config /path/to/config/file --weights /path/to/weights/file --classes /path/to/classes/file_ Checkout the [blog post](http://www.arunponnusamy.com/yolo-object-detection-opencv-python.html) to learn more. ### sample output : ![](object-detection.jpg) Checkout the object detection implementation available in [cvlib](http:cvlib.net) which enables detecting common objects in the context through a single function call `detect_common_objects()`. (_SSD and Faster R-CNN examples will be added soon_)