Merge remote-tracking branch 'origin/master'

This commit is contained in:
Marcin Kwapisz 2020-05-18 22:06:09 +02:00
commit 7069b595ad
2 changed files with 232 additions and 2 deletions

223
Kamila.py
View File

@ -1,9 +1,228 @@
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy
header = ["hydration", "weeds", "empty", "ready", "TODO"]
work = ["Podlac", "Odchwascic", "Zasadzic", "Zebrac"]
def check(field):
if field == 0:
return [[0, 0, 1, 0, "Zasadzic"], [0, 0, 1, 0, "Podlac"]]
elif field == 1:
return [[0, 1, 1, 0, "Odchwascic"], [0, 1, 1, 0, "Podlac"], [0, 1, 1, 0, "Zasadzic"]]
elif field == 2:
return [[0, 0, 0, 0, "Podlac"]]
elif field == 3:
return [[0, 1, 0, 0, "Odchwascic"], [0, 1, 0, 0, "Podlac"]]
elif field == 4:
return [[1, 0, 1, 0, "Zasadzic"]]
elif field == 5:
return [[1, 1, 1, 0, "Odchwascic"], [1, 1, 1, 0, "Zasadzic"]]
elif field == 6:
return []
elif field == 7:
return [[1, 1, 0, 0, "Odchwascic"]]
elif field == 8:
return [[0, 0, 0, 1, "Zebrac"], [0, 0, 0, 1, "Potem podlac"], [0, 0, 0, 1, "Potem zasadzic"]]
else:
print("wrong field number")
# liczenie ilości prac do wykonania
def class_counts(rows):
counts = {}
for row in rows:
label = row[-1]
if label not in counts:
counts[label] = 0
counts[label] += 1
return counts
# sprawdzenie czy wartość jest liczbą
def is_numeric(value):
return isinstance(value, int) or isinstance(value, float)
# klasa tworząca zapytanie do podziału danych
class Question():
def __init__(self, column, value):
self.column = column
self.value = value
def match(self, example):
val = example[self.column]
if is_numeric(val):
return val == self.value
# wyświetlenie pytania
def __repr__(self):
if is_numeric(self.value):
condition = "=="
return "Is %s %s %s?" % (
header[self.column], condition, str(self.value)
)
# podział danych na spełnione i niespełnione wiersze
def partition(rows, question):
true_rows, false_rows = [], []
for row in rows:
if question.match(row):
true_rows.append(row)
else:
false_rows.append(row)
return true_rows, false_rows
# funkcja implementująca indeks gini
def gini(rows):
counts = class_counts(rows)
impurity = 1
for lbl in counts:
prob_of_lbl = counts[lbl] / float(len(rows))
impurity -= prob_of_lbl ** 2
return impurity
def info_gain(left, right, current_uncertainty):
p = float(len(left)) / (len(left) + len(right))
return current_uncertainty - p * gini(left) - (1 - p) * gini(right)
# znalezienie najlepszego "miejsca" na podział danych
def find_best_split(rows):
best_gain = 0
best_question = None
current_uncertainty = gini(rows)
n_features = len(rows[0]) - 1
for col in range(n_features):
values = set([row[col] for row in rows])
for val in values:
question = Question(col, val)
true_rows, false_rows = partition(rows, question)
if len(true_rows) == 0 or len(false_rows) == 0:
continue
gain = info_gain(true_rows, false_rows, current_uncertainty)
if gain >= best_gain:
best_gain, best_question = gain, question
return best_gain, best_question
class Leaf:
def __init__(self, rows):
self.predictions = class_counts(rows)
class DecisionNode:
def __init__(self, question, true_branch, false_branch):
self.question = question
self.true_branch = true_branch
self.false_branch = false_branch
# funkcja budująca drzewo
def build_tree(rows):
gain, question = find_best_split(rows)
if gain == 0:
return Leaf(rows)
true_rows, false_rows = partition(rows, question)
true_branch = build_tree(true_rows)
false_branch = build_tree(false_rows)
return DecisionNode(question, true_branch, false_branch)
# funcka wypisująca drzewo
def print_tree(node, spacing=""):
if isinstance(node, Leaf):
print(spacing + "Predict", node.predictions)
return
print(spacing + str(node.question))
print(spacing + '--> True: ')
print_tree(node.true_branch, spacing + " ")
print(spacing + '--> False: ')
print_tree(node.false_branch, spacing + " ")
class main():
def __init__(self,traktor,field,ui,path):
def __init__(self, traktor, field, ui, path):
self.traktor = traktor
self.field = field
self.ui = ui
self.path = path
self.best_action = 0
def main(self):
pass
# dane testowe
array = ([[8, 8, 8, 8, 8, 8, 8, 8, 8, 8],
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7],
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6],
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
while (True):
self.find_best_action()
if self.best_action == -1:
break
self.do_best_action()
print("Koniec roboty")
def find_best_action(self):
testing_data = []
matrix = self.field.get_matrix()
matrix_todo = []
# print(self.field)
for i in range(10):
matrix_todo.append([])
verse = matrix[i]
for j in range(len(verse)):
coord = (i, j)
current_field = check(verse[j]) # czynnosci ktore trzeba jeszcze zrobic na kazdym polu
matrix_todo[i].append([])
for action in current_field:
matrix_todo[i][j].append(action[-1])
testing_data.extend(current_field)
# testing_data.append(current_field)
if len(testing_data) > 0:
x = build_tree(testing_data)
print_tree(x)
if isinstance(x, Leaf):
self.best_action = self.find_remaining_action(matrix_todo)
return
self.best_action = x.question.column
print(header[x.question.column])
print(x.question.value)
else:
self.best_action = self.find_remaining_action(matrix_todo)
return
def do_best_action(self):
self.traktor.set_mode(self.best_action)
while self.path.pathfinding(self.traktor, self.field, self.ui) != 0:
pass
def find_remaining_action(self, matrix_todo):
for row in matrix_todo:
for field in row:
for action in field:
print(action)
return work.index(action)
return -1

11
decisiontree.md Normal file
View File

@ -0,0 +1,11 @@
# Sztuczna Inteligencja - Raport
**Członkowie zespołu:** Marcin Kwapisz, Kamila Matysiak, Piotr Rychlicki, Justyna Zarzycka
**Temat podprojektu:** Wybór trybu pracy traktora za pomocą drzewa decyzyjnego
**Autor podprojektu:** Kamila Matysiak
### Drzewo Decyzyjne