decision tree changes
This commit is contained in:
parent
46c497ae51
commit
b9ac456210
188
Kamila.py
188
Kamila.py
@ -1,34 +1,38 @@
|
||||
import pandas as pd
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn import metrics
|
||||
import numpy
|
||||
import time
|
||||
|
||||
header = ["hydration", "weeds", "empty", "ready", "TODO"]
|
||||
work = ["Podlac", "Odchwascic", "Zasadzic", "Zebrac"]
|
||||
order = [3, 1, 2, 0]
|
||||
|
||||
|
||||
def check(field):
|
||||
# ustalenie kolejnosci czynnosci
|
||||
# 3 - zebranie
|
||||
# 1 - odchwaszczenie
|
||||
# 2 - zasadzenie
|
||||
# 0 - podlanie
|
||||
|
||||
|
||||
def translate(field):
|
||||
if field == 0:
|
||||
return [[0, 0, 1, 0, "Zasadzic"], [0, 0, 1, 0, "Podlac"]]
|
||||
return [0, 0, 1, 0]
|
||||
elif field == 1:
|
||||
return [[0, 1, 1, 0, "Odchwascic"], [0, 1, 1, 0, "Podlac"], [0, 1, 1, 0, "Zasadzic"]]
|
||||
return [0, 1, 1, 0]
|
||||
elif field == 2:
|
||||
return [[0, 0, 0, 0, "Podlac"]]
|
||||
return [0, 0, 0, 0]
|
||||
elif field == 3:
|
||||
return [[0, 1, 0, 0, "Odchwascic"], [0, 1, 0, 0, "Podlac"]]
|
||||
return [0, 1, 0, 0]
|
||||
elif field == 4:
|
||||
return [[1, 0, 1, 0, "Zasadzic"]]
|
||||
return [1, 0, 1, 0]
|
||||
elif field == 5:
|
||||
return [[1, 1, 1, 0, "Odchwascic"], [1, 1, 1, 0, "Zasadzic"]]
|
||||
return [1, 1, 1, 0]
|
||||
elif field == 6:
|
||||
return []
|
||||
return [1, 0, 0, 0]
|
||||
elif field == 7:
|
||||
return [[1, 1, 0, 0, "Odchwascic"]]
|
||||
return [1, 1, 0, 0]
|
||||
elif field == 8:
|
||||
return [[0, 0, 0, 1, "Zebrac"], [0, 0, 0, 1, "Potem podlac"], [0, 0, 0, 1, "Potem zasadzic"]]
|
||||
return [0, 0, 0, 1]
|
||||
else:
|
||||
print("wrong field number")
|
||||
print("Błąd: Zły numer pola.")
|
||||
|
||||
|
||||
# liczenie ilości prac do wykonania
|
||||
@ -56,13 +60,15 @@ class Question():
|
||||
def match(self, example):
|
||||
val = example[self.column]
|
||||
if is_numeric(val):
|
||||
return val >= self.value
|
||||
else:
|
||||
return val == self.value
|
||||
|
||||
# wyświetlenie pytania
|
||||
def __repr__(self):
|
||||
if is_numeric(self.value):
|
||||
condition = "=="
|
||||
return "Is %s %s %s?" % (
|
||||
return "Czy %s %s %s?" % (
|
||||
header[self.column], condition, str(self.value)
|
||||
)
|
||||
|
||||
@ -82,15 +88,15 @@ def partition(rows, question):
|
||||
def gini(rows):
|
||||
counts = class_counts(rows)
|
||||
impurity = 1
|
||||
for lbl in counts:
|
||||
prob_of_lbl = counts[lbl] / float(len(rows))
|
||||
impurity -= prob_of_lbl ** 2
|
||||
for label in counts:
|
||||
prob_of_label = counts[label] / float(len(rows))
|
||||
impurity -= prob_of_label ** 2
|
||||
return impurity
|
||||
|
||||
|
||||
def info_gain(left, right, current_uncertainty):
|
||||
p = float(len(left)) / (len(left) + len(right))
|
||||
return current_uncertainty - p * gini(left) - (1 - p) * gini(right)
|
||||
def info_gain(true, false, current_uncertainty):
|
||||
p = float(len(true)) / (len(true) + len(false))
|
||||
return current_uncertainty - p * gini(true) - (1 - p) * gini(false)
|
||||
|
||||
|
||||
# znalezienie najlepszego "miejsca" na podział danych
|
||||
@ -141,21 +147,38 @@ def build_tree(rows):
|
||||
return DecisionNode(question, true_branch, false_branch)
|
||||
|
||||
|
||||
# funcka wypisująca drzewo
|
||||
# funkcja wypisująca drzewo
|
||||
def print_tree(node, spacing=""):
|
||||
if isinstance(node, Leaf):
|
||||
print(spacing + "Predict", node.predictions)
|
||||
print(spacing + "Przewidywana czynność:", node.predictions)
|
||||
return
|
||||
|
||||
print(spacing + str(node.question))
|
||||
|
||||
print(spacing + '--> True: ')
|
||||
print(spacing + '--> Prawda: ')
|
||||
print_tree(node.true_branch, spacing + " ")
|
||||
|
||||
print(spacing + '--> False: ')
|
||||
print(spacing + '--> Fałsz: ')
|
||||
print_tree(node.false_branch, spacing + " ")
|
||||
|
||||
|
||||
def classify(field, node):
|
||||
if isinstance(node, Leaf):
|
||||
return node.predictions
|
||||
if node.question.match(field):
|
||||
return classify(field, node.true_branch)
|
||||
else:
|
||||
return classify(field, node.false_branch)
|
||||
|
||||
|
||||
def print_leaf(counts):
|
||||
total = sum(counts.values()) * 1.0
|
||||
probs = {}
|
||||
for label in counts.keys():
|
||||
probs[label] = str(int(counts[label] / total * 100)) + "%"
|
||||
return probs
|
||||
|
||||
|
||||
class main():
|
||||
def __init__(self, traktor, field, ui, path):
|
||||
self.traktor = traktor
|
||||
@ -164,65 +187,62 @@ class main():
|
||||
self.path = path
|
||||
self.best_action = 0
|
||||
|
||||
def main(self):
|
||||
# dane testowe
|
||||
array = ([[8, 8, 8, 8, 8, 8, 8, 8, 8, 8],
|
||||
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7],
|
||||
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6],
|
||||
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5],
|
||||
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
||||
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
|
||||
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
|
||||
# tworzymy zbior uczacy, w ktorym podajemy wszystkie mozliwe pola i czynnosci
|
||||
training_data = [[0, 0, 1, 0, "Zasadzic"],
|
||||
[0, 1, 1, 0, "Odchwascic"],
|
||||
[0, 0, 0, 0, "Podlac"],
|
||||
[0, 1, 0, 0, "Odchwascic"],
|
||||
#[1, 0, 1, 0, "Zasadzic"],
|
||||
#[1, 1, 1, 0, "Odchwascic"],
|
||||
[1, 0, 0, 0, "Czekac"],
|
||||
#[1, 1, 0, 0, "Odchwascic"],
|
||||
[0, 0, 0, 1, "Zebrac"]]
|
||||
self.tree = build_tree(training_data)
|
||||
print_tree(self.tree)
|
||||
|
||||
print("------------------")
|
||||
print("TEST:")
|
||||
|
||||
# for i in range(len(training_data)):
|
||||
# print("Przewidziania czynnosc: %s Czynnosc: %s"
|
||||
# % (print_leaf(classify(translate(i), self.tree)), training_data[i][-1]))
|
||||
# if training_data[i][-1] in self.work_field(classify(translate(i), self.tree)):
|
||||
# continue
|
||||
# else:
|
||||
# print("Testowanie zakonczone niepowodzeniem")
|
||||
# break
|
||||
|
||||
print("Przewidziania czynnosc: %s Czynnosc: Zasadzic"
|
||||
% print_leaf(classify(translate(4), self.tree)))
|
||||
print("Przewidziania czynnosc: %s Czynnosc: Odchwascic"
|
||||
% print_leaf(classify(translate(5), self.tree)))
|
||||
print("Przewidziania czynnosc: %s Czynnosc: Odchwascic"
|
||||
% print_leaf(classify(translate(7), self.tree)))
|
||||
|
||||
|
||||
def main(self):
|
||||
for action in order:
|
||||
self.traktor.set_mode(action)
|
||||
self.search_field()
|
||||
|
||||
while (True):
|
||||
self.find_best_action()
|
||||
if self.best_action == -1:
|
||||
break
|
||||
self.do_best_action()
|
||||
print("Koniec roboty")
|
||||
|
||||
def find_best_action(self):
|
||||
testing_data = []
|
||||
def work_field(self, labels):
|
||||
works = []
|
||||
for label in labels:
|
||||
if labels[label] > 0:
|
||||
works.append(label)
|
||||
return works
|
||||
|
||||
def search_field(self):
|
||||
matrix = self.field.get_matrix()
|
||||
matrix_todo = []
|
||||
# print(self.field)
|
||||
for i in range(10):
|
||||
matrix_todo.append([])
|
||||
verse = matrix[i]
|
||||
for j in range(len(verse)):
|
||||
coord = (i, j)
|
||||
current_field = check(verse[j]) # czynnosci ktore trzeba jeszcze zrobic na kazdym polu
|
||||
matrix_todo[i].append([])
|
||||
for action in current_field:
|
||||
matrix_todo[i][j].append(action[-1])
|
||||
testing_data.extend(current_field)
|
||||
# testing_data.append(current_field)
|
||||
if len(testing_data) > 0:
|
||||
x = build_tree(testing_data)
|
||||
print_tree(x)
|
||||
if isinstance(x, Leaf):
|
||||
self.best_action = self.find_remaining_action(matrix_todo)
|
||||
return
|
||||
self.best_action = x.question.column
|
||||
print(header[x.question.column])
|
||||
print(x.question.value)
|
||||
else:
|
||||
self.best_action = self.find_remaining_action(matrix_todo)
|
||||
return
|
||||
for i in range(len(matrix)):
|
||||
for j in range(len(matrix[i])):
|
||||
print("Pole (%d,%d) Przewidziania czynnosc: %s"
|
||||
% (i, j, print_leaf(classify(translate(matrix[i][j]), self.tree))))
|
||||
if work[self.traktor.get_mode()] in self.work_field(classify(translate(matrix[i][j]), self.tree)):
|
||||
print("Zgodna z aktualnym trybem, czynnosc wykonywana")
|
||||
self.path.find_path(self.traktor, self.field, self.ui, [j, i])
|
||||
self.ui.update()
|
||||
time.sleep(0.5)
|
||||
|
||||
def do_best_action(self):
|
||||
self.traktor.set_mode(self.best_action)
|
||||
while self.path.pathfinding(self.traktor, self.field, self.ui) != 0:
|
||||
pass
|
||||
|
||||
|
||||
def find_remaining_action(self, matrix_todo):
|
||||
for row in matrix_todo:
|
||||
for field in row:
|
||||
for action in field:
|
||||
print(action)
|
||||
return work.index(action)
|
||||
return -1
|
||||
|
4
main.py
4
main.py
@ -1,5 +1,5 @@
|
||||
import pygame, sys
|
||||
import tractor,pathfinding,field,ui,Justyna,Kamila,Marcin,Piotrek
|
||||
import tractor, pathfinding, field, ui, Justyna, Kamila, Marcin, Piotrek, pathfinding_decision
|
||||
from pygame.locals import *
|
||||
|
||||
pole = field.field()
|
||||
@ -7,7 +7,7 @@ path = pathfinding.pathfinding()
|
||||
traktor = tractor.tractor(pole)
|
||||
UI = ui.game_ui(traktor,pole)
|
||||
j = Justyna.main(traktor,pole,UI,path)
|
||||
k = Kamila.main(traktor,pole,UI,path)
|
||||
k = Kamila.main(traktor,pole,UI,pathfinding_decision.pathfinding_dec())
|
||||
neuro = Marcin.main(traktor,pole,UI,path)
|
||||
p = Piotrek.main(traktor,pole,UI,path)
|
||||
pygame.init()
|
||||
|
98
pathfinding_decision.py
Normal file
98
pathfinding_decision.py
Normal file
@ -0,0 +1,98 @@
|
||||
from queue import PriorityQueue
|
||||
import time
|
||||
|
||||
class pathfinding_dec():
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def heuristic(self,a, b):
|
||||
(x1, y1) = a
|
||||
(x2, y2) = b
|
||||
return abs(x1 - x2) + abs(y1 - y2)
|
||||
|
||||
def points(self, point):
|
||||
self.point = []
|
||||
for i in [[point[0],point[1]-1],[point[0]-1,point[1]],[point[0],point[1]+1],[point[0]+1,point[1]]]:
|
||||
if i[0] in [-1,10] or i[1] in [-1,10]:
|
||||
pass
|
||||
else:
|
||||
self.point.append(i)
|
||||
return self.point
|
||||
|
||||
def find_path(self, traktor, field, ui, destination):
|
||||
self.ui = ui
|
||||
self.traktor = traktor
|
||||
self.activity = self.traktor.get_mode()
|
||||
self.start_position = self.traktor.get_poz()
|
||||
self.field = field
|
||||
self.end_point = destination
|
||||
|
||||
if self.start_position == self.end_point:
|
||||
self.traktor.work()
|
||||
else:
|
||||
self.route = self.a_star(self.start_position,self.end_point)
|
||||
for i in self.route[::-1]:
|
||||
self.poz = self.traktor.get_poz()
|
||||
if i[1]> self.poz[1]:
|
||||
self.traktor.move_down()
|
||||
elif i[1]< self.poz[1]:
|
||||
self.traktor.move_up()
|
||||
elif i[0]> self.poz[0]:
|
||||
self.traktor.move_right()
|
||||
elif i[0]< self.poz[0]:
|
||||
self.traktor.move_left()
|
||||
self.ui.update()
|
||||
time.sleep(0.1)
|
||||
self.traktor.work()
|
||||
|
||||
|
||||
def a_star(self,start, end):
|
||||
self.a_queue = PriorityQueue()
|
||||
self.a_queue.put(start,0)
|
||||
self.cost = {tuple(start): 0}
|
||||
self.path_from = {tuple(start): None}
|
||||
self.finall_path = [tuple(end)]
|
||||
self.found = 0
|
||||
while not self.a_queue.empty():
|
||||
self.current = tuple(self.a_queue.get())
|
||||
|
||||
if self.current == tuple(end):
|
||||
break
|
||||
|
||||
for self.next in self.points(self.current):
|
||||
self.new_cost = self.cost[tuple(self.current)] + self.field.get_value(self.next)
|
||||
if tuple(self.next) not in self.cost or self.new_cost < self.cost[tuple(self.next)]:
|
||||
self.cost[tuple(self.next)] = self.new_cost
|
||||
self.priority = self.new_cost + self.heuristic(end, self.next)
|
||||
self.a_queue.put(self.next,self.priority)
|
||||
self.path_from[tuple(self.next)] = self.current
|
||||
if self.next == end:
|
||||
self.found = 1
|
||||
break
|
||||
if self.found:
|
||||
break
|
||||
|
||||
self.pth = self.path_from[tuple(end)]
|
||||
while not self.pth==tuple(start):
|
||||
self.finall_path.append(self.pth)
|
||||
self.pth = self.path_from[self.pth]
|
||||
|
||||
return self.finall_path
|
||||
|
||||
|
||||
def search(self,start,value):
|
||||
self.checked = []
|
||||
self.visited = [start]
|
||||
while self.visited:
|
||||
if self.field.get_value(self.visited[0]) in value:
|
||||
# print("Znaleziono pole: "+str(self.visited[0]))
|
||||
return self.visited[0]
|
||||
else:
|
||||
self.p = self.points(self.visited[0])
|
||||
for i in self.p:
|
||||
if i not in self.checked:
|
||||
self.visited.append(i)
|
||||
self.checked.append(self.visited[0])
|
||||
del self.visited[0]
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user