decision tree changes

This commit is contained in:
xkamikoo 2020-05-28 15:03:13 +02:00
parent 46c497ae51
commit b9ac456210
3 changed files with 204 additions and 86 deletions

188
Kamila.py
View File

@ -1,34 +1,38 @@
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy
import time
header = ["hydration", "weeds", "empty", "ready", "TODO"]
work = ["Podlac", "Odchwascic", "Zasadzic", "Zebrac"]
order = [3, 1, 2, 0]
def check(field):
# ustalenie kolejnosci czynnosci
# 3 - zebranie
# 1 - odchwaszczenie
# 2 - zasadzenie
# 0 - podlanie
def translate(field):
if field == 0:
return [[0, 0, 1, 0, "Zasadzic"], [0, 0, 1, 0, "Podlac"]]
return [0, 0, 1, 0]
elif field == 1:
return [[0, 1, 1, 0, "Odchwascic"], [0, 1, 1, 0, "Podlac"], [0, 1, 1, 0, "Zasadzic"]]
return [0, 1, 1, 0]
elif field == 2:
return [[0, 0, 0, 0, "Podlac"]]
return [0, 0, 0, 0]
elif field == 3:
return [[0, 1, 0, 0, "Odchwascic"], [0, 1, 0, 0, "Podlac"]]
return [0, 1, 0, 0]
elif field == 4:
return [[1, 0, 1, 0, "Zasadzic"]]
return [1, 0, 1, 0]
elif field == 5:
return [[1, 1, 1, 0, "Odchwascic"], [1, 1, 1, 0, "Zasadzic"]]
return [1, 1, 1, 0]
elif field == 6:
return []
return [1, 0, 0, 0]
elif field == 7:
return [[1, 1, 0, 0, "Odchwascic"]]
return [1, 1, 0, 0]
elif field == 8:
return [[0, 0, 0, 1, "Zebrac"], [0, 0, 0, 1, "Potem podlac"], [0, 0, 0, 1, "Potem zasadzic"]]
return [0, 0, 0, 1]
else:
print("wrong field number")
print("Błąd: Zły numer pola.")
# liczenie ilości prac do wykonania
@ -56,13 +60,15 @@ class Question():
def match(self, example):
val = example[self.column]
if is_numeric(val):
return val >= self.value
else:
return val == self.value
# wyświetlenie pytania
def __repr__(self):
if is_numeric(self.value):
condition = "=="
return "Is %s %s %s?" % (
return "Czy %s %s %s?" % (
header[self.column], condition, str(self.value)
)
@ -82,15 +88,15 @@ def partition(rows, question):
def gini(rows):
counts = class_counts(rows)
impurity = 1
for lbl in counts:
prob_of_lbl = counts[lbl] / float(len(rows))
impurity -= prob_of_lbl ** 2
for label in counts:
prob_of_label = counts[label] / float(len(rows))
impurity -= prob_of_label ** 2
return impurity
def info_gain(left, right, current_uncertainty):
p = float(len(left)) / (len(left) + len(right))
return current_uncertainty - p * gini(left) - (1 - p) * gini(right)
def info_gain(true, false, current_uncertainty):
p = float(len(true)) / (len(true) + len(false))
return current_uncertainty - p * gini(true) - (1 - p) * gini(false)
# znalezienie najlepszego "miejsca" na podział danych
@ -141,21 +147,38 @@ def build_tree(rows):
return DecisionNode(question, true_branch, false_branch)
# funcka wypisująca drzewo
# funkcja wypisująca drzewo
def print_tree(node, spacing=""):
if isinstance(node, Leaf):
print(spacing + "Predict", node.predictions)
print(spacing + "Przewidywana czynność:", node.predictions)
return
print(spacing + str(node.question))
print(spacing + '--> True: ')
print(spacing + '--> Prawda: ')
print_tree(node.true_branch, spacing + " ")
print(spacing + '--> False: ')
print(spacing + '--> Fałsz: ')
print_tree(node.false_branch, spacing + " ")
def classify(field, node):
if isinstance(node, Leaf):
return node.predictions
if node.question.match(field):
return classify(field, node.true_branch)
else:
return classify(field, node.false_branch)
def print_leaf(counts):
total = sum(counts.values()) * 1.0
probs = {}
for label in counts.keys():
probs[label] = str(int(counts[label] / total * 100)) + "%"
return probs
class main():
def __init__(self, traktor, field, ui, path):
self.traktor = traktor
@ -164,65 +187,62 @@ class main():
self.path = path
self.best_action = 0
def main(self):
# dane testowe
array = ([[8, 8, 8, 8, 8, 8, 8, 8, 8, 8],
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7],
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6],
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
# tworzymy zbior uczacy, w ktorym podajemy wszystkie mozliwe pola i czynnosci
training_data = [[0, 0, 1, 0, "Zasadzic"],
[0, 1, 1, 0, "Odchwascic"],
[0, 0, 0, 0, "Podlac"],
[0, 1, 0, 0, "Odchwascic"],
#[1, 0, 1, 0, "Zasadzic"],
#[1, 1, 1, 0, "Odchwascic"],
[1, 0, 0, 0, "Czekac"],
#[1, 1, 0, 0, "Odchwascic"],
[0, 0, 0, 1, "Zebrac"]]
self.tree = build_tree(training_data)
print_tree(self.tree)
print("------------------")
print("TEST:")
# for i in range(len(training_data)):
# print("Przewidziania czynnosc: %s Czynnosc: %s"
# % (print_leaf(classify(translate(i), self.tree)), training_data[i][-1]))
# if training_data[i][-1] in self.work_field(classify(translate(i), self.tree)):
# continue
# else:
# print("Testowanie zakonczone niepowodzeniem")
# break
print("Przewidziania czynnosc: %s Czynnosc: Zasadzic"
% print_leaf(classify(translate(4), self.tree)))
print("Przewidziania czynnosc: %s Czynnosc: Odchwascic"
% print_leaf(classify(translate(5), self.tree)))
print("Przewidziania czynnosc: %s Czynnosc: Odchwascic"
% print_leaf(classify(translate(7), self.tree)))
def main(self):
for action in order:
self.traktor.set_mode(action)
self.search_field()
while (True):
self.find_best_action()
if self.best_action == -1:
break
self.do_best_action()
print("Koniec roboty")
def find_best_action(self):
testing_data = []
def work_field(self, labels):
works = []
for label in labels:
if labels[label] > 0:
works.append(label)
return works
def search_field(self):
matrix = self.field.get_matrix()
matrix_todo = []
# print(self.field)
for i in range(10):
matrix_todo.append([])
verse = matrix[i]
for j in range(len(verse)):
coord = (i, j)
current_field = check(verse[j]) # czynnosci ktore trzeba jeszcze zrobic na kazdym polu
matrix_todo[i].append([])
for action in current_field:
matrix_todo[i][j].append(action[-1])
testing_data.extend(current_field)
# testing_data.append(current_field)
if len(testing_data) > 0:
x = build_tree(testing_data)
print_tree(x)
if isinstance(x, Leaf):
self.best_action = self.find_remaining_action(matrix_todo)
return
self.best_action = x.question.column
print(header[x.question.column])
print(x.question.value)
else:
self.best_action = self.find_remaining_action(matrix_todo)
return
for i in range(len(matrix)):
for j in range(len(matrix[i])):
print("Pole (%d,%d) Przewidziania czynnosc: %s"
% (i, j, print_leaf(classify(translate(matrix[i][j]), self.tree))))
if work[self.traktor.get_mode()] in self.work_field(classify(translate(matrix[i][j]), self.tree)):
print("Zgodna z aktualnym trybem, czynnosc wykonywana")
self.path.find_path(self.traktor, self.field, self.ui, [j, i])
self.ui.update()
time.sleep(0.5)
def do_best_action(self):
self.traktor.set_mode(self.best_action)
while self.path.pathfinding(self.traktor, self.field, self.ui) != 0:
pass
def find_remaining_action(self, matrix_todo):
for row in matrix_todo:
for field in row:
for action in field:
print(action)
return work.index(action)
return -1

View File

@ -1,5 +1,5 @@
import pygame, sys
import tractor,pathfinding,field,ui,Justyna,Kamila,Marcin,Piotrek
import tractor, pathfinding, field, ui, Justyna, Kamila, Marcin, Piotrek, pathfinding_decision
from pygame.locals import *
pole = field.field()
@ -7,7 +7,7 @@ path = pathfinding.pathfinding()
traktor = tractor.tractor(pole)
UI = ui.game_ui(traktor,pole)
j = Justyna.main(traktor,pole,UI,path)
k = Kamila.main(traktor,pole,UI,path)
k = Kamila.main(traktor,pole,UI,pathfinding_decision.pathfinding_dec())
neuro = Marcin.main(traktor,pole,UI,path)
p = Piotrek.main(traktor,pole,UI,path)
pygame.init()

98
pathfinding_decision.py Normal file
View File

@ -0,0 +1,98 @@
from queue import PriorityQueue
import time
class pathfinding_dec():
def __init__(self):
pass
def heuristic(self,a, b):
(x1, y1) = a
(x2, y2) = b
return abs(x1 - x2) + abs(y1 - y2)
def points(self, point):
self.point = []
for i in [[point[0],point[1]-1],[point[0]-1,point[1]],[point[0],point[1]+1],[point[0]+1,point[1]]]:
if i[0] in [-1,10] or i[1] in [-1,10]:
pass
else:
self.point.append(i)
return self.point
def find_path(self, traktor, field, ui, destination):
self.ui = ui
self.traktor = traktor
self.activity = self.traktor.get_mode()
self.start_position = self.traktor.get_poz()
self.field = field
self.end_point = destination
if self.start_position == self.end_point:
self.traktor.work()
else:
self.route = self.a_star(self.start_position,self.end_point)
for i in self.route[::-1]:
self.poz = self.traktor.get_poz()
if i[1]> self.poz[1]:
self.traktor.move_down()
elif i[1]< self.poz[1]:
self.traktor.move_up()
elif i[0]> self.poz[0]:
self.traktor.move_right()
elif i[0]< self.poz[0]:
self.traktor.move_left()
self.ui.update()
time.sleep(0.1)
self.traktor.work()
def a_star(self,start, end):
self.a_queue = PriorityQueue()
self.a_queue.put(start,0)
self.cost = {tuple(start): 0}
self.path_from = {tuple(start): None}
self.finall_path = [tuple(end)]
self.found = 0
while not self.a_queue.empty():
self.current = tuple(self.a_queue.get())
if self.current == tuple(end):
break
for self.next in self.points(self.current):
self.new_cost = self.cost[tuple(self.current)] + self.field.get_value(self.next)
if tuple(self.next) not in self.cost or self.new_cost < self.cost[tuple(self.next)]:
self.cost[tuple(self.next)] = self.new_cost
self.priority = self.new_cost + self.heuristic(end, self.next)
self.a_queue.put(self.next,self.priority)
self.path_from[tuple(self.next)] = self.current
if self.next == end:
self.found = 1
break
if self.found:
break
self.pth = self.path_from[tuple(end)]
while not self.pth==tuple(start):
self.finall_path.append(self.pth)
self.pth = self.path_from[self.pth]
return self.finall_path
def search(self,start,value):
self.checked = []
self.visited = [start]
while self.visited:
if self.field.get_value(self.visited[0]) in value:
# print("Znaleziono pole: "+str(self.visited[0]))
return self.visited[0]
else:
self.p = self.points(self.visited[0])
for i in self.p:
if i not in self.checked:
self.visited.append(i)
self.checked.append(self.visited[0])
del self.visited[0]