import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import metrics import numpy header = ["ready", "hydration", "weeds", "empty", "TODO"] work = ["Zebrac","Podlac","Odchwascic","Zasadzic"] #0 - 3 #1 - 0 #2 - 1 #3 - 2 def check_p(field): if field == 0: return [0, 0, 0, 0, "Zasadzic"] elif field == 1: return [0, 0, 1, 0, "Odchwascic"] elif field == 2: return [0, 0, 0, 1, "Podlac"] elif field == 3: return [0, 0, 1, 1, "Odchwascic"] elif field == 4: return [0, 1, 0, 0, "Zasadzic"] elif field == 5: return [0, 1, 1, 0, "Odchwascic"] elif field == 6: return [0, 1, 0, 1, "Ignoruj"] elif field == 7: return [0, 1, 1, 1, "Odchwascic"] elif field == 8: return [1, 0, 0, 1, "Zebrac"] else: print("wrong field number") def check(field): if field == 0: return [[0, 0, 0, 1, "Zasadzic"],[0,0,0,1,"Podlac"]] elif field == 1: return [[0, 0, 1, 1, "Odchwascic"], [0,0,1,1,"Podlac"], [0,0,1,1,"Zasadzic"]] elif field == 2: return [[0, 0, 0, 0, "Podlac"]] elif field == 3: return [[0, 0, 1, 0, "Odchwascic"],[0,0,1,0,"Podlac"]] elif field == 4: return [[0, 1, 0, 1, "Zasadzic"]] elif field == 5: return [[0, 1, 1, 1, "Odchwascic"],[0,1,1,1,"Zasadzic"]] elif field == 6: return [] elif field == 7: return [[0, 1, 1, 0, "Odchwascic"]] elif field == 8: return [[1, 0, 0, 0, "Zebrac"],[1, 0, 0, 0, "Potem podlac"],[1, 0, 0, 0, "Potem zasadzic"]] else: print("wrong field number") def un_values(rows, col): return set([row[col] for row in rows]) def class_counts(rows): counts = {} for row in rows: label = row[-1] if label not in counts: counts[label] = 0 counts[label] += 1 return counts def is_numeric(value): return isinstance(value, int) or isinstance(value, float) class Question(): def __init__(self, column, value): self.column = column self.value = value def match(self, example): val = example[self.column] if is_numeric(val): return val == self.value else: return val != self.value def __repr__(self): condition = "!=" if is_numeric(self.value): condition = "==" return "Is %s %s %s?" %( header[self.column], condition, str(self.value) ) def partition(rows, question): true_rows, false_rows = [], [] for row in rows: if question.match(row): true_rows.append(row) else: false_rows.append(row) return true_rows, false_rows def gini(rows): counts = class_counts(rows) impurity = 1 for lbl in counts: prob_of_lbl = counts[lbl]/float(len(rows)) impurity -= prob_of_lbl**2 return impurity def info_gain(left, right, current_uncertainty): p = float(len(left))/(len(left) + len(right)) return current_uncertainty - p*gini(left) - (1-p) * gini(right) def find_best_split(rows): best_gain = 0 best_question = None current_uncertainty = gini(rows) n_features = len(rows[0]) - 1 for col in range(n_features): values = set([row[col] for row in rows]) for val in values: question = Question(col, val) true_rows, false_rows = partition(rows, question) if len(true_rows) == 0 or len(false_rows) == 0: continue gain = info_gain(true_rows,false_rows,current_uncertainty) if gain >= best_gain: best_gain, best_question = gain, question return best_gain, best_question class Leaf: def __init__(self, rows): self.predictions = class_counts(rows) class DecisionNode: def __init__(self, question, true_branch, false_branch): self.question = question self.true_branch = true_branch self.false_branch = false_branch def build_tree(rows): gain, question = find_best_split(rows) if gain == 0: return Leaf(rows) true_rows, false_rows = partition(rows, question) true_branch = build_tree(true_rows) false_branch = build_tree(false_rows) return DecisionNode(question, true_branch, false_branch) def print_tree(node, spacing=""): if isinstance(node, Leaf): print(spacing + "Predict", node.predictions) return print(spacing + str(node.question)) print(spacing + '--> True: ') print_tree(node.true_branch, spacing + " ") print(spacing + '--> False: ') print_tree(node.false_branch, spacing + " ") def classify(row, node): if isinstance(node, Leaf): return node.predictions if node.question.match(row): return classify(row, node.true_branch) else: return classify(row,node.false_branch) def print_leaf(counts): total = sum(counts.values()) * 1.0 probs = {} for lbl in counts.keys(): probs[lbl] = str(int(counts[lbl]/total * 100)) + "%" return probs class main(): def __init__(self,traktor,field,ui,path): self.traktor = traktor self.field = field self.ui = ui self.path = path self.best_action = 0 def main(self): array = ([[8, 8, 8, 8, 8, 8, 8, 8, 8, 8], [7, 7, 7, 7, 7, 7, 7, 7, 7, 7], [6, 6, 6, 6, 6, 6, 6, 6, 6, 6], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3], [2, 2, 2, 2, 2, 2, 2, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) while (self.best_action != -1): self.find_best_action() self.do_best_action() print("Koniec roboty") def find_best_action(self): testing_data = [] matrix = self.field.get_matrix() matrix_todo = [] #print(self.field) for i in range(10): matrix_todo.append([]) verse = matrix[i] for j in range(len(verse)): coord = (i, j) current_field = check(verse[j]) #czynnosci ktore trzeba jeszcze zrobic na kazdym polu matrix_todo[i].append([]) for action in current_field: matrix_todo[i][j].append(action[-1]) testing_data.extend(current_field) #testing_data.append(current_field) if len(testing_data) > 0: x = build_tree(testing_data) print_tree(x) if isinstance(x, Leaf): self.best_action = self.find_remaining_action(matrix_todo) return self.best_action = x.question.column print(header[x.question.column]) print(x.question.value) else: self.best_action = self.find_remaining_action(matrix_todo) return #for row in testing_data: # print("Actual: %s. Predicted %s" % # (row[-1], print_leaf(classify(row, x)))) #for row in matrix_todo: # print(row) def do_best_action(self): self.traktor.set_mode((self.best_action+3) % 4) while self.path.pathfinding(self.traktor,self.field,self.ui) != 0: pass # 0 - 3 # 1 - 0 # 2 - 1 # 3 - 2 def find_remaining_action(self, matrix_todo): for row in matrix_todo: for field in row: for action in field: print(action) return work.index(action) return -1