import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import metrics import numpy header = ["hydration", "weeds", "empty", "ready", "TODO"] work = ["Podlac", "Odchwascic", "Zasadzic", "Zebrac"] def check(field): if field == 0: return [[0, 0, 1, 0, "Zasadzic"], [0, 0, 1, 0, "Podlac"]] elif field == 1: return [[0, 1, 1, 0, "Odchwascic"], [0, 1, 1, 0, "Podlac"], [0, 1, 1, 0, "Zasadzic"]] elif field == 2: return [[0, 0, 0, 0, "Podlac"]] elif field == 3: return [[0, 1, 0, 0, "Odchwascic"], [0, 1, 0, 0, "Podlac"]] elif field == 4: return [[1, 0, 1, 0, "Zasadzic"]] elif field == 5: return [[1, 1, 1, 0, "Odchwascic"], [1, 1, 1, 0, "Zasadzic"]] elif field == 6: return [] elif field == 7: return [[1, 1, 0, 0, "Odchwascic"]] elif field == 8: return [[0, 0, 0, 1, "Zebrac"], [0, 0, 0, 1, "Potem podlac"], [0, 0, 0, 1, "Potem zasadzic"]] else: print("wrong field number") # liczenie ilości prac do wykonania def class_counts(rows): counts = {} for row in rows: label = row[-1] if label not in counts: counts[label] = 0 counts[label] += 1 return counts # sprawdzenie czy wartość jest liczbą def is_numeric(value): return isinstance(value, int) or isinstance(value, float) # klasa tworząca zapytanie do podziału danych class Question(): def __init__(self, column, value): self.column = column self.value = value def match(self, example): val = example[self.column] if is_numeric(val): return val == self.value # wyświetlenie pytania def __repr__(self): if is_numeric(self.value): condition = "==" return "Is %s %s %s?" % ( header[self.column], condition, str(self.value) ) # podział danych na spełnione i niespełnione wiersze def partition(rows, question): true_rows, false_rows = [], [] for row in rows: if question.match(row): true_rows.append(row) else: false_rows.append(row) return true_rows, false_rows # funkcja implementująca indeks gini def gini(rows): counts = class_counts(rows) impurity = 1 for lbl in counts: prob_of_lbl = counts[lbl] / float(len(rows)) impurity -= prob_of_lbl ** 2 return impurity def info_gain(left, right, current_uncertainty): p = float(len(left)) / (len(left) + len(right)) return current_uncertainty - p * gini(left) - (1 - p) * gini(right) # znalezienie najlepszego "miejsca" na podział danych def find_best_split(rows): best_gain = 0 best_question = None current_uncertainty = gini(rows) n_features = len(rows[0]) - 1 for col in range(n_features): values = set([row[col] for row in rows]) for val in values: question = Question(col, val) true_rows, false_rows = partition(rows, question) if len(true_rows) == 0 or len(false_rows) == 0: continue gain = info_gain(true_rows, false_rows, current_uncertainty) if gain >= best_gain: best_gain, best_question = gain, question return best_gain, best_question class Leaf: def __init__(self, rows): self.predictions = class_counts(rows) class DecisionNode: def __init__(self, question, true_branch, false_branch): self.question = question self.true_branch = true_branch self.false_branch = false_branch # funkcja budująca drzewo def build_tree(rows): gain, question = find_best_split(rows) if gain == 0: return Leaf(rows) true_rows, false_rows = partition(rows, question) true_branch = build_tree(true_rows) false_branch = build_tree(false_rows) return DecisionNode(question, true_branch, false_branch) # funcka wypisująca drzewo def print_tree(node, spacing=""): if isinstance(node, Leaf): print(spacing + "Predict", node.predictions) return print(spacing + str(node.question)) print(spacing + '--> True: ') print_tree(node.true_branch, spacing + " ") print(spacing + '--> False: ') print_tree(node.false_branch, spacing + " ") class main(): def __init__(self, traktor, field, ui, path): self.traktor = traktor self.field = field self.ui = ui self.path = path self.best_action = 0 def main(self): # dane testowe array = ([[8, 8, 8, 8, 8, 8, 8, 8, 8, 8], [7, 7, 7, 7, 7, 7, 7, 7, 7, 7], [6, 6, 6, 6, 6, 6, 6, 6, 6, 6], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3], [2, 2, 2, 2, 2, 2, 2, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) while (True): self.find_best_action() if self.best_action == -1: break self.do_best_action() print("Koniec roboty") def find_best_action(self): testing_data = [] matrix = self.field.get_matrix() matrix_todo = [] # print(self.field) for i in range(10): matrix_todo.append([]) verse = matrix[i] for j in range(len(verse)): coord = (i, j) current_field = check(verse[j]) # czynnosci ktore trzeba jeszcze zrobic na kazdym polu matrix_todo[i].append([]) for action in current_field: matrix_todo[i][j].append(action[-1]) testing_data.extend(current_field) # testing_data.append(current_field) if len(testing_data) > 0: x = build_tree(testing_data) print_tree(x) if isinstance(x, Leaf): self.best_action = self.find_remaining_action(matrix_todo) return self.best_action = x.question.column print(header[x.question.column]) print(x.question.value) else: self.best_action = self.find_remaining_action(matrix_todo) return def do_best_action(self): self.traktor.set_mode(self.best_action) while self.path.pathfinding(self.traktor, self.field, self.ui) != 0: pass def find_remaining_action(self, matrix_todo): for row in matrix_todo: for field in row: for action in field: print(action) return work.index(action) return -1