AIProjekt/ID3.py

186 lines
6.2 KiB
Python

import pandas as pd
import numpy as np
from data import dataset
training_data = pd.DataFrame(data=dataset.training_data, columns=dataset.header)
testing_data = pd.DataFrame(data=dataset.testing_data, columns=dataset.header)
def entropy(target_col):
"""
Obliczenie warości entropii dla wskazanej kolumny
"""
values, counts = np.unique(target_col, return_counts=True)
entropy = np.sum(
[(-counts[i] / np.sum(counts)) * np.log2(counts[i] / np.sum(counts)) for i in range(len(values))])
return entropy
def info_gain(data, split_attribute_name, target_name="label"):
"""
Obliczenie wartości przyrostu informacji dla wskazanego atrybutu (split_attribute_name)
w podanym zbiorze (data)
"""
# Wartość entropii zbioru
total_entropy = entropy(data[target_name])
# Wyodrębnienie poszczególnych "podzbiorów"
vals, counts = np.unique(data[split_attribute_name], return_counts=True)
# Średnia ważona entropii każdego podzbioru
weighted_entropy = np.sum(
[(counts[i] / np.sum(counts)) * entropy(data.where(data[split_attribute_name] == vals[i]).dropna()[target_name])
for i in range(len(vals))])
# Przyrost informacji
information_gain = total_entropy - weighted_entropy
return information_gain
def ID3(data, original_data, features, target_attribute_name="label", parent_node_class=None):
"""
Algorytm ID3
parametry:
data zbiór danych, dla którego poszukujemy drzewa decyzyjnego
original_data oryginalny zbiór danych (zwracany gdy data == None)
features lista atrybutów wejściowego zbioru
target_attribute_name docelowy atrybut, który chcemy przewidzieć
parent_node_class nadrzędna wartość
"""
# Jeżeli wszystkie atrybuty są takie same, zwracamy liść z pierwszą napotkaną wartością
if len(np.unique(data[target_attribute_name])) <= 1:
return np.unique(data[target_attribute_name])[0]
elif len(data) == 0:
return np.unique(original_data[target_attribute_name])[
np.argmax(np.unique(original_data[target_attribute_name], return_counts=True)[1])]
elif len(features) == 0:
return parent_node_class
else:
# Aktualizacja nadrzędnej wartości
parent_node_class = np.unique(data[target_attribute_name])[
np.argmax(np.unique(data[target_attribute_name], return_counts=True)[1])]
# Obliczenie przyrostu informacji dla każdego potencjalnego atrybutu,
# według którego nastąpi podział zbioru
item_values = [info_gain(data, feature, target_attribute_name) for feature in
features]
# Najlepszym atrybutem jest ten o największym przyroście informacji
best_feature_index = np.argmax(item_values)
best_feature = features[best_feature_index]
# Struktura drzewa
tree = {best_feature: {}}
# Aktualizacja zbioru atrybutów
features = [i for i in features if i != best_feature]
# Dla każdej wartości wybranego atrybutu budujemy kolejne poddrzewo
for value in np.unique(data[best_feature]):
sub_data = data.where(data[best_feature] == value).dropna()
subtree = ID3(sub_data, data, features, target_attribute_name, parent_node_class)
tree[best_feature][value] = subtree
return (tree)
def predict(query, tree, default='none'):
"""
Przeszukiwanie drzewa w celu przewidzenia wartości atrybutu "label".
W przypadku, gdy dane wejściowe nie pokrywają się z żadnymi wartościami w drzewie
(np pH ziemi zostanie sklasyfikowane jako 'strongly acidic', a dane uczące nie obejmują rekordów dla takiej wartości),
wówczas przewidywana zostaje wartość domyślna.
"""
for key in list(query.keys()):
if key in list(tree.keys()):
try:
result = tree[key][query[key]]
except:
return default
result = tree[key][query[key]]
if isinstance(result, dict):
return predict(query, result)
else:
return result
def test(data, tree):
# Wartości docelowych atrybutów (nazwy warzyw) zostają usunięte
queries = data.iloc[:, :-1].to_dict(orient="records")
# Przewidywane wartości atrybutów
predicted = pd.DataFrame(columns=["predicted"])
# Obliczenie precyzji przewidywań
for i in range(len(data)):
predicted.loc[i, "predicted"] = predict(queries[i], tree, 'mushroom')
print('Precyzja przewidywań: ', (np.sum(predicted["predicted"] == data["label"]) / len(data)) * 100, '%')
def predict_data(data):
"""
Funkcja dostosowana do formatu danych, jakimi dysponuje traktor
'data' jest tutaj listą, która zostaje przekonwertowana do postaci słownika,
aby możliwe było wywołanie procedury 'predict'.
Wyniki zostają zwrócone w postaci listy.
"""
parse_data = [[data[0], categorize_pH(data[1]), categorize_dry_level(data[2]), '']]
#print(parse_data)
queries = pd.DataFrame(data=parse_data, columns=dataset.header)
predicted = pd.DataFrame(columns=["predicted"])
dict = queries.iloc[:, :-1].to_dict(orient="records")
for i in range(len(parse_data)):
predicted.loc[i, "predicted"] = predict(dict[i], tree, 'mushroom')
predicted_list = predicted.values.tolist()
print("Planted: ", predicted_list[0][0])
return predicted_list[0][0]
def categorize_pH(pH):
if pH <= 4.5:
return 'strongly acidic'
if 4.5 < pH <= 5.5:
return 'acidic'
if 5.5 < pH <= 6.5:
return 'slightly acidic'
if 6.5 < pH <= 7.2:
return 'neutral'
if 7.2 < pH:
return 'alkaline'
def categorize_dry_level(dry_level):
if dry_level <= 0.1:
return 'soaking wet'
if 0.1 < dry_level <= 0.4:
return 'wet'
if 0.4 < dry_level <= 0.6:
return 'medium wet'
if 0.6 < dry_level <= 0.8:
return 'dry'
if 0.8 < dry_level:
return 'very dry'
# tworzenie, wyświetlanie i testowanie drzewa
tree = ID3(training_data, training_data, training_data.columns[:-1])
#pprint(tree)
#test(testing_data, tree)