Sztuczna_Inteligencja-projekt/AI/GeneticAlgorithm.py

122 lines
3.6 KiB
Python
Raw Normal View History

import random
import keyboard as keyboard
import field as F
from ga_methods import *
from src import mapschema as maps
# Genetic Algorithm
def genetic_algorithm_setup(field):
population_units = ["", "w", "p", "s"]
# new_population to be
population_text = []
# Populate the population_text array
for row in range(D.GSIZE):
population_text.append([])
for column in range(D.GSIZE):
population_text[row].append(random.choice(population_units))
# printer
for _ in population_text:
print(population_text)
"""
Genetic algorithm parameters:
Mating pool size
Population size
"""
# units per population in generation
sol_per_pop = 8
num_parents_mating = 4
population_values = []
fitness_row = []
# population Fitness
for i in range(0, D.GSIZE):
for j in range(D.GSIZE):
fitness_row.append(local_fitness(field, i, j, population_text))
population_values.append(fitness_row)
best_outputs = []
num_generations = 10
generation = 0
while generation < num_generations:
if keyboard.is_pressed('space'):
generation += 1
print("Generation : ", generation)
# Measuring the fitness of each chromosome in the population.
fitness = cal_pop_fitness(population_values)
print("Fitness")
print(fitness)
# best_outputs.append(best_Output(new_population))
# The best result in the current iteration.
# print("Best result : ", best_Output(new_population))
# Selecting the best parents in the population for mating.
parents = select_mating_pool(new_population, fitness,
num_parents_mating)
print("Parents")
print(parents)
# Generating next generation using crossover.
offspring_crossover = crossover(parents, offspring_size=(pop_size[0] - parents.shape[0], num_weights))
print("Crossover")
print(offspring_crossover)
# Adding some variations to the offspring using mutation.
offspring_mutation = mutation(offspring_crossover, num_mutations=2)
print("Mutation")
print(offspring_mutation)
# Creating the new population based on the parents and offspring.
new_population[0:parents.shape[0], :] = parents
new_population[parents.shape[0]:, :] = offspring_mutation
# Getting the best solution after iterating finishing all generations.
# At first, the fitness is calculated for each solution in the final generation.
fitness = cal_pop_fitness(new_population)
# Then return the index of that solution corresponding to the best fitness.
best_match_idx = numpy.where(fitness == numpy.max(fitness))
print("Best solution : ", new_population[best_match_idx, :])
print("Best solution fitness : ", fitness[best_match_idx])
import matplotlib.pyplot
matplotlib.pyplot.plot(best_outputs)
matplotlib.pyplot.xlabel("Iteration")
matplotlib.pyplot.ylabel("Fitness")
matplotlib.pyplot.show()
# return best iteration of field
return 0
if __name__ == "__main__":
# Define the map of the field
mapschema = maps.createField()
# Create field array
field = []
# Populate the field array
for row in range(D.GSIZE):
field.append([])
for column in range(D.GSIZE):
fieldbit = F.Field(row, column, mapschema[column][row])
field[row].append(fieldbit)
genetic_algorithm_setup(field)