master #1
65
grader.py
Normal file
65
grader.py
Normal file
@ -0,0 +1,65 @@
|
||||
import torch
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as f
|
||||
import torch.optim as optim
|
||||
import numpy as np
|
||||
from matplotlib.pyplot import imshow
|
||||
import os
|
||||
import PIL
|
||||
import numpy as np
|
||||
import neural_network
|
||||
from matplotlib.pyplot import imshow
|
||||
|
||||
# Create the model
|
||||
model = neural_network.Net()
|
||||
|
||||
# Load state_dict
|
||||
neural_network.load_network_from_structure(model)
|
||||
|
||||
# Create the preprocessing transformation here
|
||||
transform = transforms.Compose([neural_network.Negative(), transforms.ToTensor()])
|
||||
|
||||
# load your image(s)
|
||||
img = PIL.Image.open('test\\0_100.jpg')
|
||||
img2 = PIL.Image.open('test\\1_100.jpg')
|
||||
img3 = PIL.Image.open('test\\4_100.jpg')
|
||||
img4 = PIL.Image.open('test\\5_100.jpg')
|
||||
|
||||
# Transform
|
||||
input = transform(img)
|
||||
input2 = transform(img2)
|
||||
input3 = transform(img3)
|
||||
input4 = transform(img4)
|
||||
|
||||
# unsqueeze batch dimension, in case you are dealing with a single image
|
||||
input = input.unsqueeze(0)
|
||||
input2 = input2.unsqueeze(0)
|
||||
input3 = input3.unsqueeze(0)
|
||||
input4 = input4.unsqueeze(0)
|
||||
|
||||
# Set model to eval
|
||||
model.eval()
|
||||
|
||||
# Get prediction
|
||||
output = model(input)
|
||||
output2 = model(input2)
|
||||
output3 = model(input3)
|
||||
output4 = model(input4)
|
||||
|
||||
print(output)
|
||||
index = output.cpu().data.numpy().argmax()
|
||||
print(index)
|
||||
|
||||
print(output2)
|
||||
index = output2.cpu().data.numpy().argmax()
|
||||
print(index)
|
||||
|
||||
print(output3)
|
||||
index = output3.cpu().data.numpy().argmax()
|
||||
print(index)
|
||||
|
||||
print(output4)
|
||||
index = output4.cpu().data.numpy().argmax()
|
||||
print(index)
|
Loading…
Reference in New Issue
Block a user