Add report
This commit is contained in:
parent
1202ad849d
commit
16002209bf
0
Podprojekt-CNN-Maksymilian-Kierski.md
Normal file
0
Podprojekt-CNN-Maksymilian-Kierski.md
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 30 KiB |
1
src/SubprojectMaksymilianKierski/Data/LogsIMG/loss.svg
Normal file
1
src/SubprojectMaksymilianKierski/Data/LogsIMG/loss.svg
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 29 KiB |
@ -9,7 +9,7 @@ import pickle
|
||||
# For creating model
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras.models import Sequential # to use sequential model
|
||||
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, \
|
||||
from tensorflow.keras.layers import Dense, Activation, Flatten, Conv2D, \
|
||||
MaxPooling2D # elements which we need to creat our layers
|
||||
|
||||
# For analysing model
|
||||
@ -34,8 +34,8 @@ y = [] # label set
|
||||
layer size | conv layer | Dense layer |
|
||||
64 | 1 | 0 | loss: 0.0443 - accuracy: 0.9942 - val_loss: 0.3614 - val_accuracy: 0.7692
|
||||
64 | 2 | 0 | loss: 0.0931 - accuracy: 0.9625 - val_loss: 0.4772 - val_accuracy: 0.8462
|
||||
64 | 3 | 0 | loss: 0.2491 - accuracy: 0.9020 - val_loss: 0.3762 - val_accuracy: 0.7949
|
||||
64 | 1 | 1 | loss: 0.0531 - accuracy: 0.9971 - val_loss: 0.4176 - val_accuracy: 0.8205 ->
|
||||
64 | 3 | 0 | loss: 0.2491 - accuracy: 0.9020 - val_loss: 0.3762 - val_accuracy: 0.7949 ->
|
||||
64 | 1 | 1 | loss: 0.0531 - accuracy: 0.9971 - val_loss: 0.4176 - val_accuracy: 0.8205
|
||||
64 | 2 | 1 | loss: 0.0644 - accuracy: 0.9798 - val_loss: 0.5606 - val_accuracy: 0.8462
|
||||
64 | 3 | 1 | loss: 0.1126 - accuracy: 0.9625 - val_loss: 0.5916 - val_accuracy: 0.8205
|
||||
'''
|
||||
@ -103,9 +103,7 @@ def creat_model():
|
||||
|
||||
model = Sequential() # initialize our model as a Sequential model
|
||||
|
||||
model.add(Conv2D(64, (3, 3),
|
||||
input_shape=X.shape[
|
||||
1:])) # first convolution layer 64 neurons (filters cuz it a convolutional layer), checking 3px on 3px, of 50px 50px grey img
|
||||
model.add(Conv2D(64, (3, 3), input_shape=X.shape[1:])) # first convolution layer 64 neurons (filters cuz it a convolutional layer), checking 3px on 3px, of 50px 50px grey img
|
||||
model.add(Activation('relu')) # relu activation function
|
||||
model.add(MaxPooling2D(pool_size=(2, 2))) # max pooling on 2px on 2px conv2 layer to get the max value
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user