Prześlij pliki do 'src'

Decision Tree
This commit is contained in:
Dominik Zawadzki 2020-05-19 16:17:33 +00:00
parent dc8e83e6b2
commit 8396b810bb

125
src/decisionTree.py Normal file
View File

@ -0,0 +1,125 @@
import numpy as np
import pandas as pd
import pprint
from src.graphics import *
from .waiter import Waiter
eps = np.finfo(float).eps
tasksList = []
tasksQueue = []
class DecisionTree:
def __init__(self):
graphics = Graphics()
self.waiter = Waiter(graphics)
def BuildDf(self):
actionName = 'order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check'.split(',')
distance = '1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27'.split(',')
priority = '1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4'.split(',')
dataset ={'actionName':actionName,'distance':distance,'priority':priority}
df = pd.DataFrame(dataset,columns=['actionName','distance','priority'])
return df
#Obliczanie entropii dla calego zestawu
def FindPriorityEntropy(self,df):
entropyNode = 0
values = df.priority.unique()
for value in values:
propability = df.priority.value_counts()[value]/len(df.priority)
entropyNode += -propability*np.log2(propability)
return entropyNode
#Obliczanie entropii dla wszystkich atrybut<75>w
def FindAttributesEntropy(self, df, attribute):
targetVariables = df.priority.unique()
variables = df[attribute].unique()
entropy2 = 0
for variable in variables:
entropy = 0
for targetVariable in targetVariables:
num = len(df[attribute][df[attribute]==variable][df.priority == targetVariable])
den = len(df[attribute][df[attribute]==variable])
propability = num/(den + eps)
entropy += propability*np.log2(propability+eps)
propability2 = den/len(df)
entropy2 += -propability2*entropy
return abs(entropy2)
#Znajdowanie wierzcholka o najwyzszym info Gain
def FindWinner(self, df):
infoGain = []
for key in df.keys()[:-1]:
infoGain.append(self.FindPriorityEntropy(df) - self.FindAttributesEntropy(df, key))
return df.keys()[:-1][np.argmax(infoGain)]
def GetSubtable(self, df, node, value):
return df[df[node] == value].reset_index(drop=True)
#Budowanie drzewa
def BuildTree(self, df, tree=None):
node = self.FindWinner(df)
attValues = np.unique(df[node])
if tree is None:
tree = {}
tree[node] = {}
for value in attValues:
subtable = self.GetSubtable(df, node, value)
clValue,counts = np.unique(subtable['priority'],return_counts=True)
if len(counts) == 1:
tree[node][value] = clValue[0]
else:
tree[node][value] = self.BuildTree(subtable)
return tree
#Dodawanie zadan do listy zadan
def TasksList(self, name, coordinate):
waiterNode = self.waiter.Node()
distance = abs(waiterNode[0] - coordinate[0]) + abs(waiterNode[1] - coordinate[1])
tasksList.append([name, distance])
#Kolejkowanie zadan
def Queue(self, tasksList):
df = self.BuildDf()
tree = self.BuildTree(df)
winnerNode = self.FindWinner(df)
for i in tasksList:
if winnerNode is "actionName":
subtable = tree[winnerNode][i[0]]
if subtable in ['0','1','2','3']:
tasksQueue.append([i[0], i[1], subtable])
else:
tasksQueue.append([i[0], i[1], tree[winnerNode][i[0]]['distance'][str(i[1])]])
elif winnerNode is "distance":
subtable = tree[winnerNode][i[1]]
if subtable in ['0','1','2','3']:
tasksQueue.append([i[0], i[1], subtable])
else:
tasksQueue.append([i[0], i[1], tree[winnerNode][i[1]]['actionName'][str(i[0])]])
tasksQueue.sort(key=lambda x: x[2])
print(tasksQueue)
def print(self):
df = self.BuildDf()
#a_entropy = {k:self.FindAttributesEntropy(df,k) for k in df.keys()[:-1]}
#print(a_entropy)
#print('\n Info Gain: ', self.FindWinner(df))
print(tasksList)
self.Queue(tasksList)